Révision: 6802

Date: 04/08/2011 Page: 1/6

Clé: V6.04.155

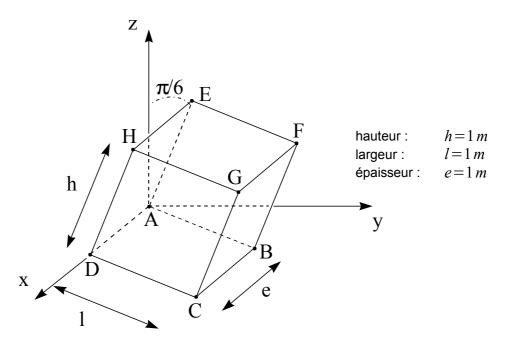
Titre : SSNV155 - Essai triaxial drainé sur un échantillon[...]

Responsable : Marc KHAM

# SSNV155 - Essai triaxial drainé sur un échantillon tourné d'un angle de –PI/6 par rapport à l'axe x avec le modèle CJS (niveau 2)

# Résumé

Ce test permet de compléter la validation du niveau 2 du modèle CJS déjà abordée dans le cas test SSNV136. Il correspond à la simulation numérique du même essai (essai triaxial drainé) sur le même matériau mais avec une géométrie différente. L'échantillon testé est ainsi tourné d'un angle de  $-\pi/6$  par rapport à l'axe x. Par conséquent, les directions x, y, z ne sont plus directions principales. Cela permet de valider les opérations d'intégration numérique du modèle qui agissent sur les termes non diagonaux des tenseurs des déformations et des contraintes.


Comme pour le cas test SSNV136, les calculs sont effectués uniquement sur la partie solide du sol, sans couplage hydro-mécanique. Par raison de symétrie, on ne s'intéresse qu'au huitième d'un échantillon soumis à un essai triaxial. Le niveau de confinement est de  $400\,kPa$ .

Il s'agit d'un test de non régression. Les résultats obtenus sont comparés avec ceux fournis par un calcul *Aster* avec un maillage dont les axes de symétrie sont les axes de coordonnées. Ils leur correspondent exactement à la rotation d'angle  $-\pi/6$  près.

Date: 04/08/2011 Page: 2/6 Responsable: Marc KHAM Clé: V6.04.155 Révision: 6802

# Problème de référence

### 1.1 Géométrie



Coordonnées des points (en mètres) :

|                | A  | В                | C                | D  |
|----------------|----|------------------|------------------|----|
| $\overline{x}$ | 0. | 0.               | 1.               | 1. |
| $\overline{y}$ | 0. | 0.86602540378445 | 0.86602540378445 | 0. |
| Z              | 0. | -0.5             | -0.5             | 0. |

# 1.2 Propriété de matériaux

 $E = 35,661654110^3 kPa$ 

v = 0.15037594

Paramètres CJS2 :  $\beta = -0.55$   $\gamma = 0.82$   $R_m = 0.289$   $R_c = 0.265$  n = 0.6  $K_o^p = 25,510^3 \, kPa$   $A = 0.25 \, kPa$   $P_a = -100 \, kPa$ 

# 1.3 Conditions initiales, conditions aux limites, et chargement

On amène l'échantillon à un état homogène, en imposant la pression de confinement correspondante sur les faces EFGH, CDHG et BCGF. Les déplacements normaux sont bloqués sur les faces ABCD, ADHE et ABFE.

# Phase 2:

On maintient les déplacements normaux bloqués sur les faces ABCD, ADHE et ABFE; ainsi que la pression de confinement sur les faces  $\ CDHG$  et  $\ BCGF$ . On applique un déplacement normal imposé sur la face *EFGH*, de façon à obtenir une déformation selon la direction normale égale à -20% (comptée à partir du début de la phase 2).

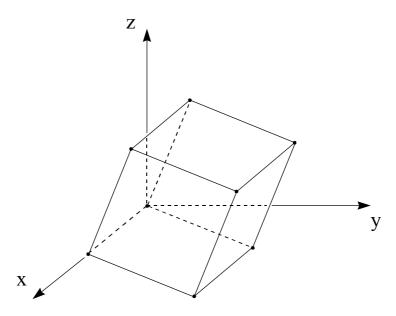
Date: 04/08/2011 Page: 3/6 Responsable: Marc KHAM Clé: V6.04.155 Révision: 6802

# Solution de référence

# 2.1 Méthode de calcul utilisée pour la solution de référence

En tenant compte de la rotation d'angle de l'échantillon, les résultats obtenus par un calcul Aster avec un maillage dont les axes de symétrie sont les axes de coordonnées, servent de référence.

## 2.2 Résultats de référence


Contraintes  $\sigma_{xx}$ ,  $\sigma_{yy}$ ,  $\sigma_{zz}$  et  $\sigma_{yx}$  au point A .

Date: 04/08/2011 Page: 4/6 Responsable: Marc KHAM Clé: V6.04.155 Révision: 6802

# **Modélisation A** 3

# 3.1 Caractéristiques de la modélisation

3D:



Découpage : 1 en hauteur, en largeur et en épaisseur.

Chargement de la phase 1 :

Pression de confinement :  $-400 \, kPa$ .

Niveau 2 du modèle CJS

# 3.2 Caractéristique du maillage

Nombre de nœuds : 8

Nombre de mailles et types : 1 HEXA8 et 6 QUA4

Date: 04/08/2011 Page: 5/6 Responsable: Marc KHAM Clé: V6.04.155 Révision: 6802

## 3.3 Grandeurs testées et résultats

Pour confinement :  $-400 \, kPa$ 

| Localisation | Numéro<br>d'ordre | déformation axiale $\varepsilon_{zz}$ (%) | Contrainte ( $kPa$ )                                                           | Référence | Aster      | %<br>différence    |
|--------------|-------------------|-------------------------------------------|--------------------------------------------------------------------------------|-----------|------------|--------------------|
| Point A      |                   | <b>-</b> 2.0 %                            | $\sigma_{xx}$                                                                  | -400.0    | -400.000   | < 10 <sup>-6</sup> |
|              |                   | <b>–10.0 %</b>                            | $\sigma_{xx}$                                                                  | -400.0    | -400.000   | < 10 <sup>-6</sup> |
|              |                   | <b>–</b> 20.0 %                           | $\sigma_{xx}$                                                                  | -400.0    | -400.000   | < 10 <sup>-6</sup> |
|              |                   | <b>-2.0</b> %                             | $\sigma_{yy}$                                                                  | -54.0613  | -54.061292 | < 10 <sup>-6</sup> |
|              |                   | <b>–10.0</b> %                            | $\sigma_{yy}$                                                                  | -63.5278  | -63.527785 | < 10 <sup>-6</sup> |
|              |                   | <b>–</b> 20.0 %                           | $\sigma_{yy}$                                                                  | -65.0989  | -65.098864 | < 10 <sup>-6</sup> |
|              | •                 | <b>-2.0</b> %                             | $\sigma_{zz}$                                                                  | -82.1839  | -82.18387  | < 10 <sup>-6</sup> |
|              |                   | <b>–10.0</b> %                            | $\sigma_{zz}$                                                                  | -110.583  | -110.58335 | < 10 <sup>-6</sup> |
|              |                   | <b>–</b> 20.0 %                           | $\sigma_{zz}$                                                                  | -115.297  | -115.29659 | < 10 <sup>-6</sup> |
|              |                   | <b>-2</b> .0 %                            | $\sigma_{_{\!\scriptscriptstyle \mathcal{V}\!\scriptscriptstyle \mathcal{Z}}}$ | -24.3549  | -24.354871 | < 10 <sup>-6</sup> |
|              |                   | <b>–10.0</b> %                            | $\sigma_{yz}$                                                                  | -40.7513  | -40.751319 | < 10 <sup>-6</sup> |
|              | 1                 | <b>-20.0</b> %                            | σ                                                                              | -43.4725  | -43.472508 | < 10 <sup>-6</sup> |



Version default

Titre : SSNV155 - Essai triaxial drainé sur un échantillon[...]

Date: 04/08/2011 Page: 6/6 Responsable : Marc KHAM Clé: V6.04.155 Révision: 6802

# Synthèse des résultats 4

Les résultats sont en parfait accord avec ceux de la référence.