Révision: 12784

Date: 14/11/2014 Page: 1/12

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Responsable : Kyrylo KAZYMYRENKO Clé : V6.04.147

SSNV147 - Traction d'un barreau endommageable : validation du pilotage

Résumé:

L'utilisation de lois adoucissantes peut conduire à des *snap-back* brutaux qui rend difficile le déroulement du calcul. Pour suivre ces instabilités, deux types de pilotage sont disponibles dans *Code_Aster*: le pilotage par prédiction élastique (PRED_ELAS), qui dépend de la loi de comportement et le pilotage en déformation (DEFORMATION) générique. Pour valider ces techniques, on procède à un essai de traction sur un barreau de section carrée dont on a affaibli une section afin de provoquer la localisation de l'endommagement.

Titre : SSNV147 - Traction d'un barreau endommageable : va[...]

Responsable : Kyrylo KAZYMYRENKO

Date : 14/11/2014 Page : 2/12

Clé : V6.04.147 Révision : 12784

1 Problème de référence

1.1 Géométrie et conditions aux limites

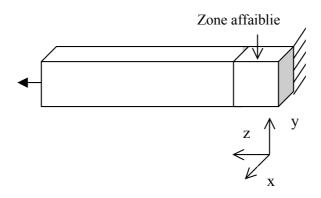


Figure 1.1-a : géométrie de la structure étudiée

La structure étudiée est un barreau de $1\,mm$ de long, de section carrée de $0.1\times0.1\,mm$. Une face est encastrée, la face opposée est soumise à un effort FZ variant linéairement avec le temps de 1 à $5\,N$.

1.2 Propriétés de matériaux

Loi de comportement	élastique	Comportement endommageant (partie saine)	Comportement endommageant (zone affaiblie)
ENDO_FRAGILE	E = 20000MPa	$\sigma_y = 6 MPa$	$\sigma_y = 5 MPa$
	$\nu = 0$	$E_T = -10000 MPa$	$E_T = -10000 MPa$
ENDO_ISOT_BETON	E = 20000MPa	$\sigma_{y} = 6 MPa$	$\sigma_{y} = 5 MPa$
	v=0	$E_T = -10000 MPa$	$E_T = -10000 MPa$
ROUSS_PR	E = 206400 MPa	D=2	D=2
et ROUSSELIER	v = 0.3	$\sigma_1 = 490 MPa$	$\sigma_1 = 400 MPa$
ROODDELLER		$f_0 = 5E-04$	$f_0 = 5E-04$
		courbe de traction :	courbe de traction :
		$R(p)=r_i+(r_o-r_i)e^{-bp}$	$R(p)=r_i+(r_o-r_i)e^{-bp}$
		P : déformation plastique	P : déformation plastique
		cumulée	cumulée
		$r_i = 1500 MPa$	$r_i = 1500 MPa$
		$r_o = 520 MPa$	$r_o = 520 MPa$
		b = 2.4	b = 2.4
BETON_DOUBLE_DP	E = 31000 MPa	f_c =38.3 MPa	$f_c = 38.3 MPa$
	v = 0.22	f_t =4.0 MPa	$f_t = 3.0 MPa$
		$\beta = 1.16$	$\beta = 1.16$
		$G_t = 2.83E - 04 Nmm/mm^2$	$G_t = 2.83E - 04 Nmm/mm^2$
		$G_c = 2.83E - 02 Nmm/mm^2$	$G_c = 2.83E - 02 Nmm/mm^2$

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]
Responsable: Kyrylo KAZYMYRENKO

Date: 14/11/2014 Page: 3/12 Clé: V6.04.147 Révision: 12784

Solution de référence

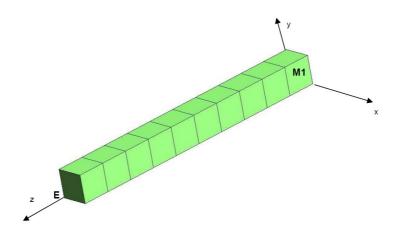
Les valeurs testées sont des valeurs de non-régression.

Titre : SSNV147 - Traction d'un barreau endommageable : va[...]

Responsable : Kyrylo KAZYMYRENKO

Date : 14/11/2014 Page : 4/12

Clé : V6.04.147 Révision : 12784


3 Modélisation A

3.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ENDO_FRAGILE. On valide le pilotage par prédiction élastique.

3.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

3.3 Grandeurs testées et résultats

Pour valider la solution obtenue, on teste au numéro d'ordre 11 :

- 1) le déplacement suivant z de la face sur laquelle le chargement est imposé,
- 2) la contrainte zz ainsi que la valeur de l'endommagement dans la maille affaiblie

Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut
VARI_ELGA	V1	M1, point 1	défaut

On teste également le travail élastique sur la structure ainsi que le travail réel obtenu grâce à la commande POST_ELEM.

Pour valider plus spécifiquement la constance du pilotage, on vérifie par ailleurs au même numéro d'ordre (11) la valeur de l'instant et de ETA_PILOTAGE.

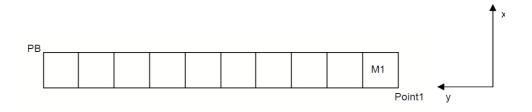
Nom du champ	Composante	Code_Aster
TRAV_EXT	TRAV_ELAS	3.3125E-07
TRAV_EXT	TRAV_REEL	1.91875E-06
INST	-	11
ETA_PILOTAGE	-	0.5

Titre : SSNV147 - Traction d'un barreau endommageable : va[...]

Responsable : Kyrylo KAZYMYRENKO

Date : 14/11/2014 Page : 5/12

Clé : V6.04.147 Révision : 12784


4 Modélisation B

4.1 Caractéristiques de la modélisation

La modélisation testée est AXIS. La loi de comportement utilisée est la loi ENDO_FRAGILE. On valide le pilotage par prédiction élastique.

4.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments QUA8.

4.3 Grandeurs testées et résultats

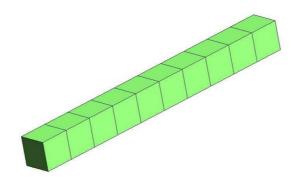
Pour valider la solution obtenue, on teste au numéro d'ordre 11 :

- 1) le déplacement suivant y de la face sur laquelle le chargement est imposé,
- 2) la contrainte yy ainsi que la valeur de l'endommagement dans la maille affaiblie

Nom du champ	Composante	Lieu	Tolérance
DEPL	DY	PB	défaut
SIEF_ELGA	SIYY	MI , point 1	défaut
VARI_ELGA	V1	MI , point 1	défaut

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Date: 14/11/2014 Page: 6/12 Responsable: Kyrylo KAZYMYRENKO Clé: V6.04.147 Révision: 12784


Modélisation C 5

5.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ENDO ISOT BETON. On valide le pilotage par déformation.

Caractéristiques du maillage 5.2

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section),

Grandeurs testées et résultats 5.3

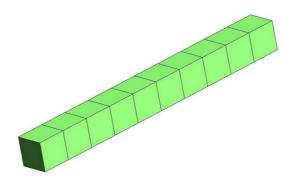
Pour valider la solution obtenue, on teste au numéro d'ordre 41 :

- 1) le déplacement suivant z de la face sur laquelle le chargement est imposé,
- 2) la contrainte zz ainsi que la valeur de l'endommagement dans la maille affaiblie,

Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut
VARI_ELGA	V1	M1, point 1	défaut

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Date: 14/11/2014 Page: 7/12 Responsable: Kyrylo KAZYMYRENKO Clé: V6.04.147 Révision: 12784


Modélisation D 6

6.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ROUSS PR. On valide le pilotage par déformation.

Caractéristiques du maillage 6.2

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

6.3 Grandeurs testées et résultats

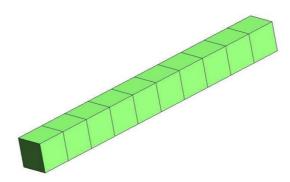
Pour valider la solution obtenue, on teste au numéro d'ordre 20 :

- 1) le déplacement suivant z de la face sur laquelle le chargement est imposé,
- 2) la contrainte zz dans la maille affaiblie

Nom du champ	Composante	Lieu	Tolérance
DEPL	DΖ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut

Titre: SSNV147 - Traction d'un barreau endommageable: va[...] Date: 14/11/2014 Page: 8/12

Responsable: Kyrylo KAZYMYRENKO Clé: V6.04.147 Révision: 12784


Modélisation E

7.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ENDO ISOT BETON. On valide le pilotage par prédiction élastique.

7.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

7.3 Grandeurs testées et résultats

Pour valider la solution obtenue, on teste au numéro d'ordre 19 :

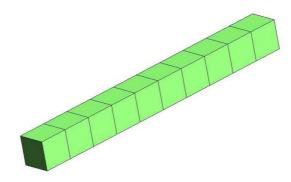
- 1) le déplacement suivant z de la face sur laquelle le chargement est imposé,
- 2) la contrainte zz ainsi que la valeur de l'endommagement dans la maille affaiblie.

Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut
VARI_ELGA	V1	MI , point 1	défaut

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Responsable: Kyrylo KAZYMYRENKO

Date: 14/11/2014 Page: 9/12
Clé: V6.04.147 Révision: 12784


8 Modélisation F

8.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi BETON_DOUBLE_DP. On valide le pilotage par prédiction élastique.

8.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

8.3 Grandeurs testées et résultats

Pour valider la solution obtenue, on teste au numéro d'ordre 41 :

- 1) le déplacement suivant z de la face sur laquelle le chargement est imposé,
- 2) la contrainte zz dans la maille affaiblie.

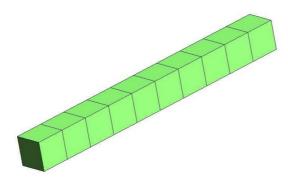
Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut

Titre : SSNV147 - Traction d'un barreau endommageable : va[...]

Responsable : Kyrylo KAZYMYRENKO

Date : 14/11/2014 Page : 10/12

Clé : V6.04.147 Révision : 12784


9 Modélisation I

9.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ROUSSELIER (en grandes déformations de type SIMO MIEHE). On valide le pilotage par déformation.

9.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

9.3 Grandeurs testées et résultats

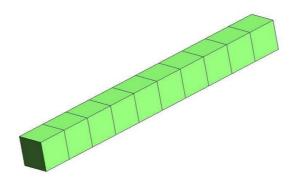
Pour valider la solution obtenue, on teste au numéro d'ordre 21 :

- 1) le déplacement suivant z de la face sur lequel le chargement est imposé,
- 2) la contrainte zz ainsi que la valeur de l'endommagement dans la maille affaiblie
- 3) la valeur de l'indicateur de plasticité dans la maille affaiblie.

Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	défaut
SIEF_ELGA	SIZZ	MI , point 1	défaut
VARI_ELGA	V3	MI , point 1	défaut

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Date: 14/11/2014 Page: 11/12 Responsable: Kyrylo KAZYMYRENKO Clé: V6.04.147 Révision: 12784


Modélisation J 10

10.1 Caractéristiques de la modélisation

Le modèle testé est 3D. La loi de comportement utilisée est la loi ROUSSELIER avec l'option (PORO TYPE = 2, cf. U4.43.01) permettant de calculer la porosité en fonction de la déformation totale (en grandes déformations de type SIMO MIEHE). On valide le pilotage par déformation.

10.2 Caractéristiques du maillage

Le maillage est obtenu par GIBI. Il est composé de 10 éléments HEXA8 (un seul élément dans la section)

10.3 Grandeurs testées et résultats

Pour valider la solution obtenue, on teste au numéro d'ordre 21 :

- 1) le déplacement suivant z de la face sur lequel le chargement est imposé,
- 2) la contrainte zz ainsi que la valeur de l'endommagement dans la maille affaiblie
- 3) la valeur de l'indicateur de plasticité dans la maille affaiblie.

Nom du champ	Composante	Lieu	Tolérance
DEPL	DZ	E	10E-6
SIEF_ELGA	SIZZ	MI , point 1	10E-6
VARI_ELGA	V3	MI , point 1	10E-6

Version default

Titre: SSNV147 - Traction d'un barreau endommageable: va[...]

Date: 14/11/2014 Page: 12/12

Responsable : Kyrylo KAZYMYRENKO Clé : V6.04.147 Révision : 12784

11 Synthèse des résultats

Ce cas-test permet de vérifier le bon fonctionnement du pilotage pour les différentes lois de comportement adoucissantes. Les résultats obtenus fournissent des valeurs de non-régression.