Révision: 11225

Date: 05/08/2013 Page: 1/6

Clé: V6.02.139

Titre : SSNL139 – Validation de la ré-actualisation de l'a[...]

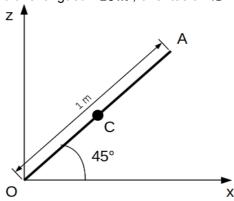
Responsable : Jean-Luc FLÉJOU

SSNL139 – Validation de la ré-actualisation de l'angle de vrille des poutres

Résumé:

Lorsque l'on utilise les éléments poutre avec la cinématique GROT_GDEP, les deux angles nautiques qui traduisent l'orientation de l'élément doivent être actualisés à chaque itération. Il en va de même pour le 3ème angle nautique γ traduisant l'angle de vrille de la poutre. Ce test a pour but de valider la ré-actualisation de cet angle à l'aide d'un calcul non-linéaire.

Il permet de vérifier la modélisation POU_D_TGM et que les modélisations POU_D_E et POU_D_EM donnent les mêmes résultats avec la cinématique GROT GDEP.


Titre: SSNL139 – Validation de la ré-actualisation de l'a[...]

Date: 05/08/2013 Page: 2/6 Responsable : Jean-Luc FLÉJOU Clé: V6.02.139 Révision: 11225

Description

Géométrie

On considère une poutre d'une longueur $10\,m$, orientée à $45\,^\circ$ dans le plan XOZ.

La section de la poutre est rectangulaire, 0.1m de large, 0.2m de haut.

1.2 Propriétés des matériaux

Le matériau utilise les propriétés suivantes :

Module d'Young $E_b = 1.0E + 10 Pa$

Coefficient de Poisson $v_b = 0.25$

1.3 Conditions aux limites et chargements

Le nœud O est bloqué en déplacement dans toutes les directions et en rotation autour de Y. Le nœud A est bloqué en déplacement selon Y. De plus, on interdit à la poutre la rotation sur ellemême.

Les déplacements du nœud A sont imposés comme suit : $DX = \frac{-\sqrt{2}}{2} \frac{t}{100}$ et $DZ = \frac{-\sqrt{2}}{2} \frac{t}{100}$

avec t prenant les valeurs de 0 à 1 par incrément de 0.1.

Une force de 100 N selon Y est appliquée au n œ ud C (milieu de poutre) afin que la poutre se déplace dans la direction Y .

1.4 Référence

Les résultats de référence s'obtiennent avec un calcul non-linéaire et une poutre orientée selon l'axe X . Pour cette orientation la valeur de l'angle de vrille reste toujours la même durant le calcul, avec et sans ré-actualisation les résultats sont identiques.

Pour la référence le déplacement imposé au nœud A est : $DX = -\frac{t}{100}$

Le déplacement DY du nœud C (milieu de poutre) donne la valeur de référence.

Date: 05/08/2013 Page: 3/6

Titre: SSNL139 - Validation de la ré-actualisation de l'a[...]

Responsable : Jean-Luc FLÉJOU Clé : V6.02.139 Révision : 11225

2 Modélisation A

2.1 Caractéristiques de la modélisation

La poutre est modélisée par 10 mailles SEG2 auxquelles est affectée la modélisation POU_D_TGM. On rappelle que la cinématique utilisée est DEFORMATION = 'GROT GDEP'.

2.2 Valeurs testées

On compare le déplacement en $\,Y\,$ du nœud $\,C\,$ à celui obtenu par le même calcul avec une poutre orientée selon l'axe $\,X\,$.

Instant	Type de référence	Valeur de référence	Tolérance
1.0	Autre Aster	1.508470E-01	1.0E-05

Titre: SSNL139 – Validation de la ré-actualisation de l'a[...]

Date: 05/08/2013 Page: 4/6 Responsable : Jean-Luc FLÉJOU Clé: V6.02.139 Révision: 11225

3 Modélisation B

3.1 Caractéristiques de la modélisation

La poutre est modélisée avec 10 mailles SEG2 auxquelles on affecte la modélisation POU D E. On rappelle que la cinématique utilisée est DEFORMATION = 'GROT GDEP'.

3.2 Valeurs testées

On compare le déplacement en Y du nœud C à celui obtenu par le même calcul avec une poutre orientée selon l'axe $\, X \, . \,$

Instant	Type de référence	Valeur de référence	Tolérance
1.0	Autre Aster	0.15658191432102	1.0E-05

Date: 05/08/2013 Page: 5/6

Titre: SSNL139 – Validation de la ré-actualisation de l'a[...]

Responsable : Jean-Luc FLÉJOU Clé : V6.02.139 Révision : 11225

4 Modélisation C

4.1 Caractéristiques de la modélisation

La poutre est modélisée par 10 mailles SEG2 auxquelles on affecte la modélisation POU_D_EM. On rappelle que la cinématique utilisée est DEFORMATION = 'GROT GDEP'.

4.2 Valeurs testées

On compare le déplacement en Y du nœud C à celui obtenu par le même calcul avec une poutre orientée selon l'axe X et également au même calcul avec des POU D E.

Instant	Type de référence	Valeur de référence	Tolérance
1.0	Autre Aster	0.15668437975194	1.0E-05
1.0	Autre Aster (POU_D_E)	0.15658191432102	7.0E-04

Version default

Titre: SSNL139 - Validation de la ré-actualisation de l'a[...]

Date: 05/08/2013 Page: 6/6 Responsable : Jean-Luc FLÉJOU Clé: V6.02.139 Révision: 11225

5 **Synthèse**

La réactualisation de l'angle de vrille permet de rendre compte des déplacements et des rotations des sections de la poutre lors de calculs incrémentaux.