Date: 27/03/2013 Page: 1/4

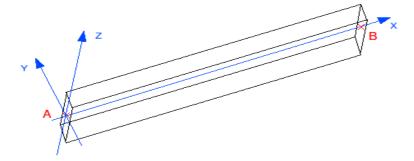
Titre : SSNL123 - Flambement d'une poutre Multi-Fibres

Responsable : Jean-Luc FLÉJOU Clé : V6.02.123 Révision : 10721

SSNL123 - Flambement d'une poutre Multi-Fibres

Résumé:

Ce test concerne la validation du flambement d'une poutre multifibres avec un modèle POU_D_TGM. Ce problème permet de tester :


- les éléments finis linéiques de type poutres avec un modèle POU D TGM,
- la prise en compte de l'orientation,
- le calcul des premiers modes de flambement.

Titre: SSNL123 - Flambement d'une poutre Multi-Fibres

Date: 27/03/2013 Page: 2/4 Responsable : Jean-Luc FLÉJOU Clé: V6.02.123 Révision: 10721

Problème de référence

Géométrie

Longueur de la barre : 3m

Articulée en A

Simplement appuyée en B

Forces en B

Section de la barre :

hauteur: 0.04m largeur: 0.02m

Propriétés du matériau 1.2

Matériau pour l'élément linéique :

Élasticité : E=2.1E+11 Pa

1.3 **Conditions aux chargements**

Au point A: blocage des degrés de liberté: dx, dy, dz, DRXAu point B: blocage des degrés de liberté: dx, dy, dz, DRX

Chargement au point $B := (F_x, 0, 0)$.

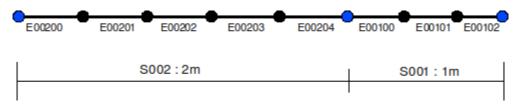
Solution de référence

2.1 Grandeurs et résultats de référence

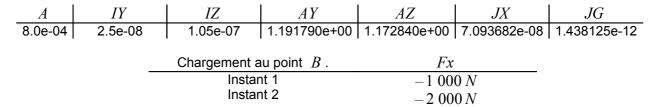
Pour une poutre bi-articulée, la théorie du flambement d'Euler donne comme solution :

$$Ncd = n^2 \cdot \frac{\pi^2 EI}{L^2}$$
 où n est le numéro du mode.

Date: 27/03/2013 Page: 3/4


Titre : SSNL123 - Flambement d'une poutre Multi-Fibres

Responsable : Jean-Luc FLÉJOU Clé : V6.02.123 Révision : 10721


3 Modélisation A

3.1 Caractéristiques de la modélisation et du maillage

Élément linéique : POU D TGM

Caractéristiques mécaniques de la section (unités homogènes à des mètres)

3.2 Grandeurs testées et résultats

Les grandeurs testées et analysées sont les premières valeurs des charges de flambement dans les 2 directions.

	Valeurs Théorique	Tolérance (%)
1er Mode / I_z	5757.3N	0.2
1er Mode / I_{y}	24180.5 N	0.2
2ème Mode / I_z	23029.1 N	0.2
3ème Mode / I_z	51815.4 N	0.2
2ème Mode / I_y	96722.1 N	0.2
4ème Mode / I_z	92116.3 N	0.7

Les instants de calcul 1 et 2 donnent les mêmes résultats. Le calcul du vecteur de précontrainte après le ${\tt STAT_NON_LINE}$ s'effectue donc de façon correcte.

Titre: SSNL123 - Flambement d'une poutre Multi-Fibres

Date: 27/03/2013 Page: 4/4 Responsable : Jean-Luc FLÉJOU Clé: V6.02.123 Révision: 10721

Synthèse des résultats 4

Ce cas test montre le bon fonctionnement d'une modélisation du comportement des poutres par une approche multifibres. Une boucle, réalisée avec le langage python, permet de récupérer les informations aux différents pas de temps.

- Le calcul de la matrice de rigidité, option RIGI MECA, est réalisé à partir d'un AFFE CHAR MECA F.
- Le calcul du vecteur des efforts internes est réalisé par un CREA CHAMP à partir d'un STAT NON LINE en récupérant les SIEF ELGA.