Titre : SDNS108 - Réponse dynamique d'une dalle en béton a[...] Responsable : Serguei POTAPOV Date : 31/05/2012 Page : 1/9 Clé : V5.06.108 Révision : 8953

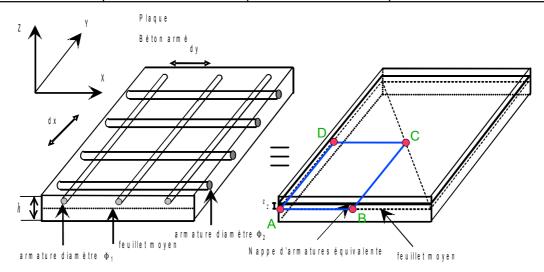
SDNS108 – Réponse dynamique d'une dalle en béton armé appuyée sur 4 cotés soumise à une charge concentrée

Résumé:

Ce test représente le calcul d'une dalle en béton armé, en flexion, soumise à une charge concentrée. Il permet de valider la modélisation Q4GG (coque épaisse) utilisant le modèle matériau global GLRC_DAMAGE en la comparant à un calcul analogue avec le code EUROPLEXUS. La dalle est simplement appuyée sur les quatre cotés.

Deux modélisations sont effectuées :

- 1) Modélisation A permet de tester le modèle Q4GG avec des QUAD4,
- 2) Modélisation B permet de tester le modèle Q4GG avec des TRIA3,
- Modélisation C permet de tester le modèle Q4GG avec un critère de plasticité défini par l'utilisateur.


Date: 31/05/2012 Page: 2/9 Responsable : Serguei POTAPOV Clé: V5.06.108 Révision: 8953

Problème de référence

1.1 Géométrie

Dalle carrée, de longueur l=1.8m, d'épaisseur h=0.12m, en appui simple sur les quatre bords. Le ferraillage de flexion est parallèle aux bords; il est identique sur chacune des deux faces et dans chacun des deux sens (dx, dy étant les espacements des fers dans les directions x et y). L'enrobage des fers longitudinaux les plus proches des faces est de 22 mm . L'enrobage des fers par rapport aux bords latéraux de la dalle de 2 cm est négligé. Le tableau ci-après récapitule les données du ferraillage. Le pourcentage géométrique d'acier μ est donné pour une face dans un sens.

Diamètre des armatures	Espacement	Section acier/section du béton	distance grille/surface moyenne de la dalle
$\Phi = 0.01 \text{m}$	dx = dy = 0.1 m	$\mu = 0.65$	$e_s = \pm 0.038 \mathrm{m}$

On note $a_x = \frac{A_x}{d_x}$ et $a_y = \frac{A_y}{d_x}$ les taux de ferraillage (ici : $a_x = a_y = 7,854.10^{-4} \,\mathrm{m}$), A_x (A_y) étant

l'aire de la section d'une barre de fer dans la direction x(y); e_s est la distance des nappes à la surface movenne.

Pour des raisons de symétrie on modélise un quart (*ABCD*) de la dalle.

1.2 Propriétés de matériaux

Les propriétés mécaniques des aciers sont les suivantes:

Module d'Young	odule d'Young Coefficient		Pente
E_a	de Poisson	à 0.2 % σ_y	d'écrouissage
210000 MPa	0,3	500 MPa	0.MPa

Celles du béton sont les suivantes :

Module d'Young	Coefficient	Résistance en	Résistance en
E_b	de Poisson	compression σ_{c}	traction $\sigma_{_t}$
35700 MPa	0,22	52,5 MPa	4,4 <i>MPa</i>

Titre : SDNS108 - Réponse dynamique d'une dalle en béton a[...] Responsable : Serguei POTAPOV

Date: 31/05/2012 Page: 3/9 Clé: V5.06.108 Révision: 8953

Date: 31/05/2012 Page: 4/9

Titre : SDNS108 - Réponse dynamique d'une dalle en béton a[...]

Responsable: Serguei POTAPOV Clé: V5.06.108 Révision: 8953

Pour la modélisation C, on entre manuellement les moments limite de plasticité :

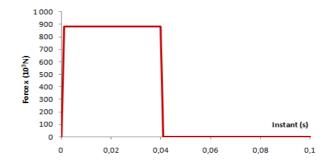
MP1X = 1200 Nm/m MP1Y = 1200 Nm/m

MP2X = -1200 Nm/m

MP2Y = -1200 Nm/m

1.3 Conditions aux limites et chargements

Les conditions aux limites sont les suivantes :


Simplement appuyée sur les cotés AD et BC: DZ=0

Symétrie sur les cotés

BC: DX = DRY = 0CD: DY = DRX = 0

L'évolution du chargement, appliqué au centre de la plaque, est présenté ci-dessous.

Instant (s)	Fz(N)
0.0	0.0
0.001	8.8E5
0.040	8.8E5
0.041	0.0
1.0	0.0

1.4 **Conditions initiales**

La plaque est initialement au repos dans un état vierge.

Date: 31/05/2012 Page: 5/9

Titre : SDNS108 - Réponse dynamique d'une dalle en béton a[...]

Responsable : Serguei POTAPOV Clé : V5.06.108 Révision : 8953

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Les résultats de référence ont été obtenus avec Europlexus.

Les maillages utilisés par Europlexus et Code_Aster sont les mêmes.

2.2 Résultats de référence

Les résultats de référence correspondent au déplacement suivant Z du point C situé au centre de la plaque. L'instant retenu correspond à l'instant où le déplacement obtenu avec Europlexus est maximum. Pour les modélisations A et B, les valeurs obtenues par Europlexus sont :

Instant	One made we	Lasaliastias	Europlexus		
(s)	Grandeur	Localisation	Élément	Déplacement (m)	
0,0093436	Déplacement suivant Z	Centre de la plaque	Q4GS	-0.04890906 m	
0,0091250	Déplacement suivant Z	Centre de la plaque	T3GS	-0.04574386 m	

Pour la modélisation C, on a

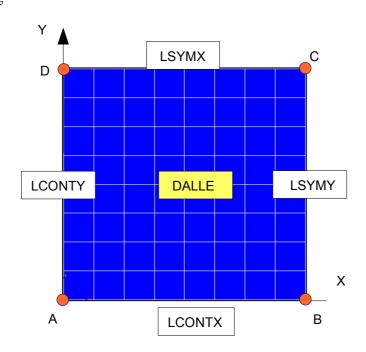
Instant	One rede	Lasslinstins	Europlexus		
(s)	Grandeur	Localisation	Élément	Déplacement (m)	
0,0096593	Déplacement suivant Z	Centre de la plaque	Q4GS	-0.05870762 m	

2.3 Incertitude sur la solution

Solution numérique.

2.4 Références bibliographiques

[1] [R3.07.09] : « Élément de plaque épaisse T3G »


[2] [U2.02.01] : « Notice d'utilisation des éléments plaques, coques et coques volumiques SHB »

Date: 31/05/2012 Page: 6/9 Responsable: Serguei POTAPOV Clé: V5.06.108 Révision: 8953

Modélisation A 3

3.1 Caractéristiques de la modélisation

Modélisation Q4GG

3.2 Caractéristiques du maillage

Nombre de nœuds : 81

Nombre de mailles et type : 64 QUAD4

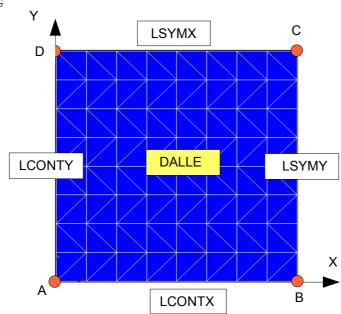
Grandeurs testées et résultats 3.3

Instant (s)	GRANDEUR	COMPOSANT E	GROUP_NO	Type de Référence	Référence	Tolérance (%)
0,0093436	DEPL	DZ	Point_C	'SOURCE_ EXTERNE'	-0.04890906 m	5.0

3.4 Remarques

Les calculs ont été effectués avec un schéma d'intégration temporelle explicite de type différences finis centrées.

Titre : SDNS108 - Réponse dynamique d'une dalle en béton a[...]


Responsable : Serguei POTAPOV

Date : 31/05/2012 Page : 7/9
Clé : V5.06.108 Révision : 8953

4 Modélisation B

4.1 Caractéristiques de la modélisation

Modélisation Q4GG

4.2 Caractéristiques du maillage

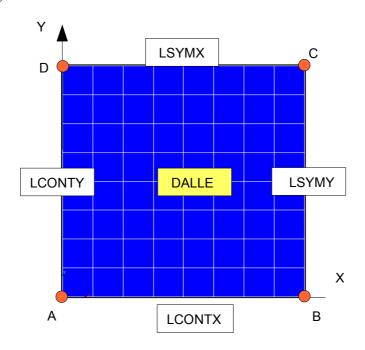
Nombre de nœuds : 91

Nombre de mailles et type : 128 TRIA3

4.3 Grandeurs testées et résultats

Instant (s)	GRANDEUR	COMPOSANT E	GROUP_NO	Type de Référence	Référence	Tolérance (%)
0,0091250	DEPL	DZ	Point_C	'SOURCE_ EXTERNE'	-0.04574386 m	1.5

4.4 Remarques


Les calculs ont été effectués avec un schéma d'intégration temporelle explicite de type différences finis centrées.

Date: 31/05/2012 Page: 8/9 Responsable : Serguei POTAPOV Clé: V5.06.108 Révision: 8953

Modélisation C 5

5.1 Caractéristiques de la modélisation

Modélisation Q4GG

5.2 Caractéristiques du maillage

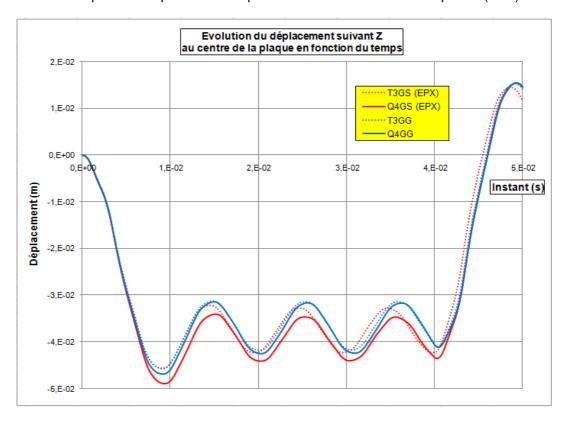
Nombre de nœuds : 81

Nombre de mailles et type : 64 QUAD4

Grandeurs testées et résultats 5.3

Instant (s)	GRANDEUR	COMPOSANT E	GROUP_NO	Type de Référence	Référence	Tolérance (%)
0,0096593	DEPL	DZ	Point_C	'SOURCE_ EXTERNE'	-0.05870762 m	20.0

5.4 Remarques


Les calculs ont été effectués avec un schéma d'intégration temporelle explicite de type différences finis centrées.

Date: 31/05/2012 Page: 9/9 Responsable: Serguei POTAPOV Clé: V5.06.108 Révision: 8953

Synthèse des résultats 6

Les résultats obtenus sont satisfaisants pour les modélisations A et B.

Sur la figure ci-dessous, nous avons tracé l'évolution du déplacement au centre de la plaque en fonction du temps. Cette réponse est comparée à celle obtenue avec Europlexus (EPX).

Les résultats obtenus pour la modélisation C montrent un écart important sur les amplitudes entre les résultats obtenus avec Europlexus et Code_Aster. L'utilisation de moments limite de plasticité définis manuellement doit être fait avec précaution.