Révision: 13490

Date: 17/07/2015 Page: 1/16

Clé: V5.05.100

Titre : SDNX100 - Vérification du chaînage MISS3D- Code_As[...]

Responsable : Georges DEVESA

SDNX100 - Vérification du chaînage MISS3D-*Code_Aster* dans le cas d'un modèle brochette

Résumé:

Ce test permet la vérification du chaînage Code Aster - MISS3D.

Sur le cas d'un bâtiment, représenté par un modèle brochette, a été mis en œuvre le calcul de l'interaction sol-structure d'un modèle 1D de bâtiment à radier rigide, soumis à une excitation sismique, par la méthode fréquentielle de couplage.

Les spectres de plancher, au niveau du radier et au niveau du sommet de la structure, obtenus à l'aide de la chaîne *Code_Aster* - MISS3D sont testés en non-régression.

Une seconde modélisation utilise un modèle constitué de la structure précédente ainsi que d'un super-élément comprenant un macro-élément obtenu à partir de l'évolution temporelle de l'impédance de sol obtenue à l'aide de la chaîne $Code_Aster$ – MISS3D, puis intégrée par une méthode de Laplace. Le macro-élément représente le comportement du domaine de sol. La réponse à la sollicitation sismique est obtenue par un calcul dynamique transitoire en repère relatif au moyen de l'opérateur DYNA NON LINE.

Une troisième modélisation est aussi proposée, dont la principale différence avec la précédente est que la résolution transitoire se fait, cette fois, en repère absolu (imposition de la force sismique *via* le mot-clé FORCE_SOL de la commande AFFE_CHAR_MECA).

Une autre modélisation différente, la modélisation E, permet à la fois de déterminer de nouvelles caractéristiques de sol à partir des niveaux de déformation de cisaillement dans chaque couche et de définir la force sismique par le mot clé CHARGE de CALC_MISS. La résolution transitoire se fait également en repère absolu.

Date: 17/07/2015 Page: 2/16 Clé: V5.05.100 Responsable: Georges DEVESA Révision: 13490


Problème de référence

1.1 Géométrie

Le logiciel MISS3D utilise la méthode fréquentielle de couplage pour tenir compte de l'interaction sol-structure. Cette méthode, basée sur la sous-structuration dynamique, consiste à découper le domaine d'étude en trois sous-domaines :

- le sol,
- la fondation,
- le bâtiment.

Le sol

Configuration du sol stratifié

La fondation

La fondation du bâtiment est de forme rectangulaire. Le radier du bâtiment est donc représenté par un rectangle de $26.40 \, m$ de largeur et de $30.40 \, m$ de longueur. Il est découpé en 400 éléments de manière que la taille maximale de chaque élément satisfasse les critères de propagation des ondes élastiques (pour une longueur d'onde minimale de 9.2m à $20\,Hz$).

Le bâtiment

Le bâtiment est modélisé en modèle "brochette" 1D par un ensemble de 6 poutres non pesantes et de 7 masses.

Date: 17/07/2015 Page: 3/16 Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

Caractéristiques du bâtiment

Les caractéristiques des poutres et de masses qui ont servi à modéliser le bâtiment sont données dans les tableaux ci dessous :

Masse	Altitude (<i>m</i>)	Masse ($10^6 kg$)	Inerties massiques ($10^8 kg.m^2$)			
			Jxx	Jyy	Jzz	
1	-5.80	6.892	3.9920	5.3000	9.2930	
2	-0.45	6.179	3.0001	3.9834	6.9835	
3	7.84	6.610	3.8291	5.0841	8.9132	
4	12.50	4.540	2.6270	3.4919	6.1159	
5	16.70	4.226	2.7261	3.2500	5.6980	
6	22.35	4.706	2.7261	3.6196	6.3457	
7	36.50	2.401	1.3901	1.8467	3.2368	

Caractéristiques des masses du bâtiment

Poutre	Aire (<i>m</i> ²)	Moment d'inertie (m^4)		Coefficient de cisaillement		Constante de torsion $(10^4 m^4)$
	A	Iz	Iy	Ay	Az	Jx
1	156	11635	14648	2.25	1.79	1.70
2	154	11469	15063	2.17	1.86	1.70
3	204	13291	16398	2.65	1.61	1.70
4	200	13292	16091	2.60	1.63	1.70
5	200	13292	16091	2.60	1.63	1.70
6	83	7367	10921	1.51	1.70	1.70

Caractéristiques des Poutres du bâtiment

La géométrie prise en compte dans Code_Aster est celle de la structure du bâtiment ainsi que sa fondation, les données géométriques et physiques du sol sont directement données à MISS3D.

Date: 17/07/2015 Page: 4/16 Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

Propriétés des matériaux 1.2

Le sol

Les caractéristiques mécaniques des couches du modèle de sol qui ont été utilisées sont résumées dans le tableau ci-dessous :

Couche	Sous-couche	vs(m/s)	E(Pa)	$\rho(kg/m^2)$	ν	$\xi(\%)$	h(m)	b(%)
1	1	184	2.67 10 ⁸	2650	0.49	2.5	7.6	5.0
1	2	206	3.35 10 ⁸	2650	0.49	2.5	7.6	5.0
2	3	340	9.21 10 ⁸	2710	0.47	2.5	33.0	5.0
2	4	417	1.39 10 ⁹	2710	0.47	2.5	34.0	5.0
2	5	496	1.96 10 ⁹	2710	0.47	2.5	34.0	5.0
3	6	620	3.02 10 ⁹	2710	0.45	2.5	5.50	5.0
3	7	870	5.95 10 ⁹	2710	0.45	2.5	5.50	5.0
4	8	2500	4.23 10 ¹⁰	2710	0.25	1.0	_	2.0

La fondation et le bâtiment

$$\begin{array}{c|cc}
E & 4. E10 \\
\hline
\nu & 1.76470588 E-1 \\
\hline
\rho & 0. \\
\hline
\alpha & 0.
\end{array}$$

Date: 17/07/2015 Page: 5/16 Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

1.3 Conditions aux limites et chargements mécaniques

La liaison entre le modèle "brochette" 1D et le radier est réalisée par un encastrement au nœud commun, on bloque ce nœud et on impose un mouvement de corps solide au radier.

Accélération transitoire dans le sol donnée par les fonctions LBNS et LBEW avec coefficient de 1.5.

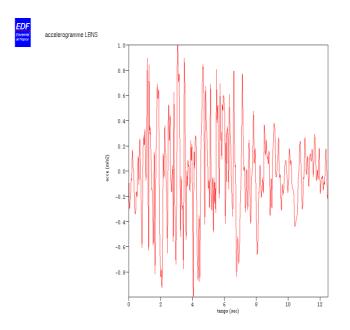


Figure 1.3-a: Accélèrogramme LBNS

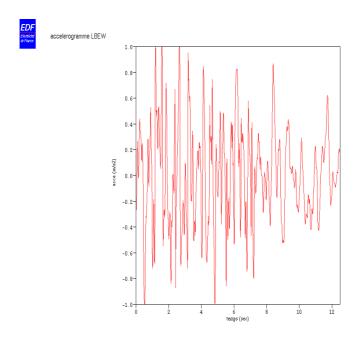


Figure 1.3-b : Accélérogramme LBEW

Version default

Date: 17/07/2015 Page: 6/16

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...]

Responsable : Georges DEVESA Clé : V5.05.100 Révision : 13490

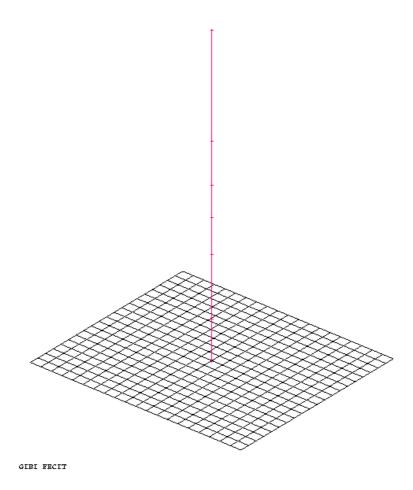
2 Solution de référence

2.1 Résultats de référence

On ne teste que des valeurs de non-régression. On se base sur les spectres de plancher obtenus en X et Y des points situés :

- au niveau du radier (Z = -5.80 m),
- au sommet ($Z = 36.50 \, m$).

Les spectres sont observés dans la gamme de fréquence de 0.4 à $20\,Hz$. L'amortissement réduit est pris à 5% suivant les deux directions horizontales X et Y.


2.2 Références bibliographiques

- [1] G. QUILTON: « Présentation et exemples d'utilisation de CLASSI: Code de calcul d'analyse des effets de l'interaction sol structure sur la réponse sismique des bâtiments », E SE TA 82-01 SG 1.
- [2] « Code CLASSI » Version A du 18/06/80 -Fiche de mise en exploitation du 19/12/88.

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...] Date: 17/07/2015 Page: 7/16
Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

3 Modélisation A

3.1 Caractéristiques de la modélisation

3.2 Caractéristiques du maillage

Le maillage fourni à *Code_Aster* contient des éléments de type QUAD4 et SEG2 pour modéliser respectivement le radier et le modèle "brochette".

3.3 Valeurs testées

On va tester (non-régression) les valeurs de SRO suivant les directions horizontales en différentes fréquences.

Date: 17/07/2015 Page: 8/16 Clé: V5.05.100 Responsable: Georges DEVESA Révision: 13490

Modélisation B 4

4.1 Caractéristiques de la modélisation

La modélisation utilise un modèle comprenant celui de la modélisation A ainsi qu'un super-élément comprenant un macro-élément obtenu à partir de l'évolution temporelle de l'impédance de sol obtenue à l'aide de la chaîne Code_Aster - MISS3D, puis intégrée par une méthode de Laplace. Ce macro-élément représente le comportement du domaine de sol.

La liaison entre le modèle "brochette" 1D et le radier est également réalisée par un encastrement au nœud commun, mais sans le bloquer tout en imposant un mouvement de corps solide au radier. La réponse à la sollicitation sismique est obtenue par un calcul dynamique transitoire au moyen de l'opérateur DYNA_NON_LINE. Les forces sismiques y sont définies par une charge de vecteur assemblé mono-appui calculé par Code Aster. La charge de force interne de sol définie par FORCE SOL et la charge sismique sont introduites par 2 occurrences du mot clé EXCIT dans une résolution dynamique en repère relatif. Le lieu d'interface sol-structure est défini implicitement à partir de la donnée du super-élément au moyen du mot clé SUPER MAILLE.

4.2 Caractéristiques du maillage

Le maillage fourni à Code Aster est le même que celui des modélisations A et B. Le maillage final contient en plus une super-maille s'appuyant sur le macro-élément représentant le comportement du domaine de sol défini précédemment.

4.3 Valeurs testées

Les tests sont de type non-régression.

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...] Date: 17/07/2015 Page: 9/16
Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

5 Modélisation C

5.1 Caractéristiques de la modélisation

La modélisation utilise un modèle comprenant celui de la modélisation A ainsi qu'un super-élément comprenant un macro-élément obtenu à partir de l'évolution temporelle de l'impédance de sol obtenue à l'aide de la chaîne $Code_Aster-MISS3D$, puis intégrée par une méthode de Laplace. Ce macro-élément représente le comportement du domaine de sol.

La liaison entre le modèle "brochette" 1D et le radier est également réalisée par un encastrement au nœud commun, mais sans le bloquer tout en imposant un mouvement de corps solide au radier. La réponse à la sollicitation sismique est obtenue par un calcul dynamique transitoire au moyen de l'opérateur DYNA_NON_LINE. La charge de force interne de sol et la charge sismique sont introduites par une seule occurrence du mot clé EXCIT avec le mot clé FORCE_SOL dans une résolution dynamique en repère absolu.

La charge sismique est calculée par CALC_MISS avec le mot-clé facteur EXCIT_SOL et elle est écrite dans un fichier dont l'unité logique est spécifiée par le mot-clé UNITE_RESU_FORC. Cette charge sismique sera ensuite fournie à DYNA_NON_LINE à partir d'une évolution temporelle de forces sismiques contenue dans le fichier dont l'unité est donnée par l'opérande UNITE_RESU_FORC de FORCE_SOL. Le lieu d'interface sol-structure est défini explicitement au moyen du mot clé GROUP NO INTERF.

Afin de réduire le temps CPU, on dégrade volontairement la résolution en jouant sur plusieurs paramètres : on diminue l'instant final, on augmente le pas de temps ainsi que le pas d'archivage (qui pilote directement l'échantillonnage pour CALC_MISS). Le temps CPU peut ainsi être réduit à moins de 3 minutes, alors que pour retrouver la solution de référence il faut plus d'une heure.

Dans le fichier de commandes, on rappelle en commentaire les valeurs des paramètres à utiliser pour retrouver cette solution précise. Les tests associés sont aussi indiqués en commentaire.

5.2 Caractéristiques du maillage

Le maillage fourni à *Code_Aster* est le même que celui de la modélisation A. Le maillage final contient en plus une super-maille s'appuyant sur le macro-élément représentant le comportement du domaine de sol défini précédemment.

5.3 Valeurs testées

Comme la précision de la solution est volontairement dégradée, afin de réduire le temps CPU, on ne peut plus se comparer directement aux résultats de la modélisation B. Les tests seront donc tous de type non régression. Les valeurs testées sont extraites, à certaines fréquences, des SRO suivant X et Y au niveau du radier et du sommet. Les valeurs ne sont pas rappelées ici car elle sont données dans le fichier de commande.

Version default

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...]

Date: 17/07/2015 Page: 10/16

Responsable: Georges DEVESA

Clé: V5.05.100 Révision: 13490

6 Modélisation D

6.1 Caractéristiques de la modélisation

La modélisation D est en tout point identique à la modélisation C. La seule différence réside dans l'option de parallélisation MPI.

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...] Date: 17/07/2015 Page: 11/16
Responsable: Georges DEVESA Clé: V5.05.100 Révision: 13490

7 Modélisation E

7.1 Caractéristiques de la modélisation

La modélisation utilise un modèle comprenant celui de la modélisation A ainsi qu'un super-élément comprenant un macro-élément obtenu à partir de l'évolution temporelle de l'impédance de sol obtenue à l'aide de la chaîne $Code_Aster-MISS3D$, puis intégrée par une méthode de Laplace. Ce macro-élément représente le comportement du domaine de sol.

La liaison entre le modèle "brochette" 1D et le radier est également réalisée par un encastrement au nœud commun, mais sans le bloquer tout en imposant un mouvement de corps solide au radier. La réponse à la sollicitation sismique est obtenue par un calcul dynamique transitoire au moyen de l'opérateur DYNA_NON_LINE. La charge de force interne de sol est introduite par une seule occurrence du mot clé EXCIT par une charge définie avec le mot clé FORCE_SOL dans une résolution dynamique en repère absolu.

La charge sismique est calculée sous forme de charge mécanique par <code>CALC_MISS</code> avec l'option <code>TYPE_RESU='CHARGE'</code> à partir de l'intégration temporelle des forces sismiques contenues dans le fichier dont l'unité logique est spécifiée par le mot-clé <code>UNITE_RESU_FORC</code>. Elle est combinée à la double intégration temporelle de l'accélération sous forme de déplacement imposé derrière le mot clé <code>FONC_SIGNAL</code>. Le lieu d'interface sol-structure est défini explicitement au moyen du mot clé <code>NOEUD_AFFE</code>. Il y a deux charges sismiques correspondant chacune aux composantes suivant X et Y . Ces charges sismiques sont également introduites comme 2 occurrences du mot clé <code>EXCIT</code> de l'opérateur <code>DYNA NON LINE</code>.

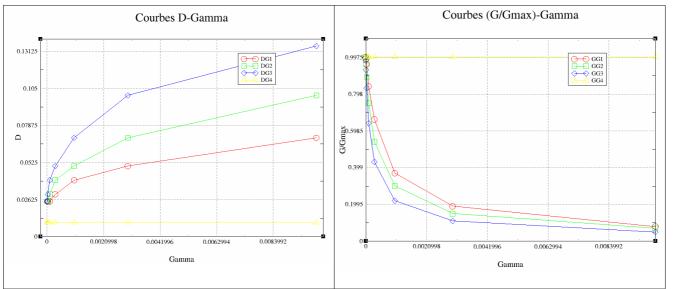
Afin de réduire le temps CPU, on dégrade volontairement la résolution en jouant sur plusieurs paramètres : on diminue l'instant final, on augmente le pas de temps ainsi que le pas d'archivage (qui pilote directement l'échantillonnage pour CALC_MISS). Le temps CPU peut ainsi être réduit à moins de 3 minutes, alors que pour retrouver la solution de référence il faut plus d'une heure.

Dans le fichier de commandes, on rappelle en commentaire les valeurs des paramètres à utiliser pour retrouver cette solution précise. Les tests associés sont aussi indiqués en commentaire.

7.2 Caractéristiques du maillage

Le maillage fourni à *Code_Aster* est le même que celui de la modélisation A. Le maillage final contient en plus une super-maille s'appuyant sur le macro-élément représentant le comportement du domaine de sol défini précédemment.

On introduit également le maillage du modèle auxiliaire d'une colonne de sol reproduisant la discrétisation des couches du modèle de sol. Ce modèle sert de base à la détermination des niveaux d'accélération et de déformation maximales par couche au cours du transitoire de calcul transitoire sous l'effet d'une accélération horizontale imposée à la surface du sol en champ libre.


7.3 Nouvelles propriétés du sol

Les propriétés du sol définies au §1.2 sont modifiées à partir de l'état de déformation de cisaillement par couche sous l'effet de la sollicitation sismique horizontale définie en 1.3 intégrant des courbes D-Gamma et (G/Gmax)-Gamma par matériau constitutif des couches définies dans le tableau cidessous . Les nouvelles caractéristiques sont obtenues au moyen de l'opérateur <code>DEFI_SOL_EQUI</code> après avoir imposé le signal en champ libre par le mot clé <code>LIEU_SIGNAL='CHAMP_LIBRE'</code>. On vérifie par la suite qu'on retrouve les mes caractéristiques de sol par couche en lançant une seconde fois <code>DEFI_SOL_EQUI</code> en imposant le signal obtenu à la base de la colonne grâce au premier appel à <code>DEFI_SOL_EQUI</code> comme signal d'entrée par le mot clé <code>LIEU_SIGNAL='AFFLEURANT'</code>.

Titre : SDNX100 - Vérification du chaînage MISS3D- Code_As[...]

Responsable : Georges DEVESA

Date : 17/07/2015 Page : 12/16
Clé : V5.05.100 Révision : 13490

Caractéristiques D-Gamma et (G/Gmax)-Gamma par matériau constitutif des couches

Les nouvelles caractéristiques de sol obtenues par <code>DEFI_SOL_EQUI</code> sont résumées dans le tableau suivant :

NUME_COUCHE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 311 32 33 34 35	1 1.90000E+00 2 1.90000E+00 3 1.90000E+00 4 1.90000E+00 5 1.90000E+00 7 1.90000E+00 8 1.90000E+00 9 4.12500E+00 14 4.12500E+00 14 4.12500E+00 14 4.12500E+00 14 4.12500E+00 14 4.12500E+00 14 4.12500E+00 15 4.12500E+00 16 4.12500E+00 17 4.25000E+00 18 4.25000E+00 19 4.25000E+00 10 4.25000E+00 11 4.25000E+00 12 4.25000E+00 13 4.25000E+00 14 4.25000E+00 15 4.25000E+00 16 4.25000E+00 17 4.25000E+00 18 4.25000E+00 19 4.25000E+00 19 4.25000E+00 20 4.25000E+00 21 4.25000E+00 22 4.25000E+00 23 4.25000E+00 24 4.25000E+00 25 5.50000E+00 26 4.25000E+00 27 4.25000E+00 28 4.25000E+00 29 4.25000E+00 20 4.25000E+00 20 4.25000E+00 21 4.25000E+00 22 4.25000E+00 23 4.25000E+00 24 5.5000E+00 25 5.50000E+00	RHO 2.65000E+03 2.65000E+03 2.65000E+03 2.65000E+03 2.65000E+03 2.65000E+03 2.65000E+03 2.71000E+03	E 2.56763E+08 2.25568E+08 1.98765E+08 1.83055E+08 2.31426E+08 2.22460E+08 2.04392E+08 6.15324E+08 5.839976E+08 5.839976E+08 5.39976E+08 5.24714E+08 5.12672E+08 5.06281E+08 5.05413E+08 9.13351E+08 8.71497E+08 8.96583E+08 8.71497E+08 8.12355E+08 8.17051E+08 8.12355E+09 1.31552E+09 1.31552E+09 1.21696E+09	NU 4.90000E-01 4.90000E-01 4.90000E-01 4.90000E-01 4.90000E-01 4.90000E-01 4.70000E-01	AMOR_HYST 5.00000E-02 5.00000E-02 5.47801E-02 5.82985E-02 5.79648E-02 6.23900E-02 6.50673E-02 6.63939E-02 6.63939E-02 7.21068E-02 7.44424E-02 7.63330E-02 7.79009E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.87613E-02 7.44424E-02 7.88799E-02 7.79009E-02 7.17446E-02 7.128834E-02 7.12688E-02 7.46482E-02 6.65663E-02 7.4672E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02 7.16937E-02

Nouvelles caractéristiques de matériau constitutif pour chaque couche de sol

7.4 Valeurs testées

Comme on a changé les caractéristiques du sol, qui correspondent maintenant à un sol plus souple, on ne peut plus se comparer directement aux résultats de la modélisation C. Les tests seront donc principalement de type non-régression.

Révision: 13490

Date: 17/07/2015 Page: 13/16

Clé: V5.05.100

Titre: SDNX100 - Vérification du chaînage MISS3D- Code_As[...]
Responsable: Georges DEVESA

Cependant, on conserve comme référence $\texttt{AUTRE}_\texttt{ASTER}$ les valeurs obtenues par la modélisation C. Les valeurs testées sont extraites, à certaines fréquences, des pics de SRO suivant X et Y au niveau du radier et du sommet. Les valeurs ne sont pas rappelées ici car elles sont données dans le fichier de commande.

Ceci permet de constater que les pics de SRO obtenus par la modélisation E sont, comme attendu du fait de la souplesse du sol, plus bas d'environ 20 à 30 % que ceux obtenus pour la modélisation E.

Titre: SDNX100 - Vérification du chaînage MISS3D- Code As[...] Date: 17/07/2015 Page: 14/16 Responsable: Georges DEVESA

Clé: V5.05.100 Révision: 13490

Modélisation F 8

8.1 Caractéristiques de la modélisation

Dans ce cas, aucune modification est introduite en termes de modélisation. Le but de ce cas-test est de tester les mot-clés facteur interpol et pcent freq calcul de la macro-commande CALC MISS. Le fait d'interpoler les impédances de sol permet ainsi de réduire le temps CPU final du cas test.

Caractéristiques du maillage 8.2

Le maillage fourni à Code_Aster est le même que celui de la modélisation B. Le maillage final contient en plus une super-maille s'appuyant sur le macro-élément représentant le comportement du domaine de sol défini précédemment.

8.3 Valeurs testées

Les valeurs testées sont de type AUTRE ASTER et correspondent aux valeurs obtenues avec Code_Aster pour la modélisation B sans interpolation des impédances de sol.

Titre : SDNX100 - Vérification du chaînage MISS3D- Code_As[...]
Responsable : Georges DEVESA

.] Date: 17/07/2015 Page: 15/16 Clé: V5.05.100 Révision: 13490

9 Modélisation G

9.1 Caractéristiques de la modélisation

Dans ce cas, aucune modification n'est introduite en termes de modélisation. Le but de ce cas-test est de tester la macro-commande PRE_SEISME_NONL, en particulier, l'option associée à la transition statique-dynamique (option STAT_DYNA). Cette option permet d'intégrer dans la macro-commande la réalisation du calcul statique (STAT_NON_LINE) et des deux calculs dynamiques (DYNA_NON_LINE) nécessaires pour stabiliser la réponse entre le passage statique-dynamique mis en place par l'utilisateur en dehors de la macro-commande.

9.2 Caractéristiques du maillage

Etant donné que les impédances de sol ne sont pas calculées sur une base de réduction dynamique (REDUC_DYNA_ISS = 'NON' et REDUC_DYNA_IFS = 'NON' dans PRE_SEISME_NONL), le maillage ne contient pas des mailles fictives.

9.3 Valeurs testées

Afin d'assurer que la transition statique-dynamique se passe correctement, on vérifie que, à la fin du deuxième appel à DYNA_NON_LINE effectué à l'intérieur de la macro-commande, les valeurs de déplacement au centre du radier restent constants et les valeurs d'accélération tendent vers zéro.

Date: 17/07/2015 Page: 16/16

Titre : SDNX100 - Vérification du chaînage MISS3D- Code_As[...]

Responsable : Georges DEVESA Clé : V5.05.100 Révision : 13490

10 Synthèse des résultats

Les spectres de plancher obtenus par un calcul dynamique transitoire au moyen de l'opérateur DYNA_NON_LINE, sur un modèle constitué de la structure précédente ainsi que d'un super-élément comprenant le macro-élément représentant le comportement du domaine de sol, demeurent assez proches et avec une précision acceptable de ceux obtenus directement à l'aide de la chaîne $Code_Aster-MISS3D$, que l'on soit en repère relatif ou en repère absolu pour la résolution transitoire.