Révision: 6351

Date: 31/05/2011 Page: 1/6

Titre : SDNL100 - Pendule simple en grande oscillation

Responsable : Albert ALARCON Clé : V5.02.100

SDNL100 - Pendule simple en grande oscillation

Résumé:

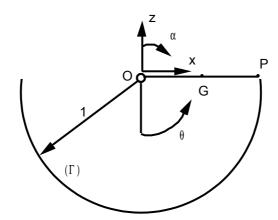
L'objet de ce test est de calculer le mouvement d'une barre pesante articulée à un point fixe par l'une de ses extrémités, libre ailleurs et oscillant avec grande amplitude dans un plan vertical.

Intérêt : tester l'élément de câble à deux nœuds - qui est en fait un élément de barre - en dynamique et son fonctionnement dans l'opérateur $\texttt{DYNA_NON_LINE}$.

Date: 31/05/2011 Page: 2/6 Responsable: Albert ALARCON Clé: V5.02.100 Révision: 6351

Problème de référence

1.1 Géométrie



Un pendule OP rigide de longueur 1 et de centre de gravité G oscille autour du point O .

La position angulaire du pendule est repérée par : $\alpha = \theta - \pi$

1.2 Propriétés de matériaux

Masse linéique du pendule : 1. kg/m

Rigidité axiale (produit du module d'Young par l'aire de la section droite) : $1.10^8 N$

1.3 Conditions aux limites et chargements

Le pendule est articulé au point fixe O. Sous l'action de la pesanteur, son extrémité P oscille sur le demi-cercle (Γ) de centre O et de rayon 1 . Il n'y a pas de frottement.

Conditions initiales 1.4

Le pendule est lâché sans vitesse de la position horizontale OP.

$$\theta = +\frac{\pi}{2}, \dot{\theta} = 0$$

Date: 31/05/2011 Page: 3/6 Responsable: Albert ALARCON Clé: V5.02.100 Révision: 6351

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La période T d'un pendule mobile sans frottement autour du point fixe O, dont la masse est concentrée au centre de gravité G (OG=l) et dont l'amplitude angulaire maximale est θ_0 est donnée par la série [bib1] :

$$T = 2\pi\sqrt{\frac{l}{g}}\left[1 + \sum_{n=1}^{\infty} a_n^2 \left(\sin\frac{\theta_0}{2}\right)^{2n}\right]$$

$$a_n = \frac{2n-1}{2n}$$

2.2 Résultats de référence

Pour
$$l = 0.5 m$$
, $g = 9.81 m/s^2$ et $\theta_0 = \pi/2$, on trouve : $T = 1.6744 s$

2.3 Incertitude sur la solution

On a sommé les termes de la série jusqu'à n=12 inclusivement, le dernier terme pris en compte étant inférieur à 10⁻⁵ fois la somme calculée.

2.4 Références bibliographiques

1) J. HAAG, "Les mouvements vibratoires", P.U.F. (1952).

Version default

Titre : SDNL100 - Pendule simple en grande oscillation Date : 31/05/2011 Page : 4/6

Responsable : Albert ALARCON Clé : V5.02.100 Révision : 6351

3 Modélisation A

3.1 Caractéristiques de la modélisation

Le pendule est modélisé par un élément de câble à 2 noeuds, identique à un élément de barre de section constante.

Discrétisations:

- spatiale : un élément de câble MECABL2
- temporelle : analyse du mouvement sur une période complète $\,T\,$ par pas de temps égaux à $\,T/40$.

3.2 Caractéristiques du maillage

Nombre de nœuds :

Nombre de mailles et types : 1 maille SEG2

Date: 31/05/2011 Page: 5/6 Responsable : Albert ALARCON Clé: V5.02.100 Révision: 6351

Résultats de la modélisation A 4

4.1 Valeurs testées

Identification	Référence	Tolérance	
DX sur noeud P à $t=0,4186$	-1.000000	2,5 % (relatif)	
DZ sur noeud P à $t=0.4186$	-1.000000	0,05 % (relatif)	
DX sur noeud P à $t=0.8372$	-2.000000	0,01 % (relatif)	
DZ sur noeud P à $t=0.8372$	0.000000	7,0E-4 % (absolu)	
DX sur noeud P à $t=1,2558$	-1.000000	7,5 % (relatif)	
DZ sur noeud P à $t=1,2558$	-1.000000	0,3 % (relatif)	
DX sur noeud P à $t=1,6744$	0.000000	1,0E-6 % (absolu)	
DZ sur noeud P à $t=1,6744$	0.000000	1,5E-3 % (absolu)	

On teste également les paramètres de la structure de données résultats :

Identification	Référence	Tolérance
INST pour NUME_ORDRE= 10	0.418600	0,10 %
ITER_GLOB pour NUME_ORDRE= 10	9.000000	0.00%
INST pour NUME_ORDRE= 15	0.837200	0,10 %
ITER_GLOB pour NUME_ORDRE= 15	5.000000	0.00%
INST pour NUME_ORDRE= 19	1.674400	0,10 %
ITER_GLOB pour NUME_ORDRE= 19	6.000000	0.00%

4.2 Remarques

- L'intégration temporelle se fait par la méthode de NEWMARK (règle du trapèze),
- A chaque pas de temps, la convergence est atteinte en moins de 9 itérations.

Date: 31/05/2011 Page: 6/6 Responsable: Albert ALARCON Clé: V5.02.100 Révision: 6351

Synthèse des résultats 5

On voit sur ce cas-test que l'intégration temporelle par la "règle du trapèze" de Newmark ne modifie que très légèrement la fréquence et n'apporte pas d'amortissement parasite, puisqu'au bout d'une période on revient à très peu près à la position initiale.