Date: 01/02/2011 Page: 1/8 Responsable: Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

TPNL300 - Transfert de chaleur unidimensionnel avec rayonnement

Résumé:

Ce test est issu de la validation indépendante de la version 3 en thermique stationnaire non linéaire.

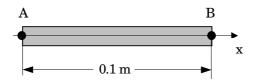
Il s'agit d'un problème 1D linéique représenté par deux modélisations, l'une plane, l'autre volumique.

Les fonctionnalités testées sont les suivantes :

- •élément thermique plan,
- •élément thermique volumique,
- conditions limites : (températures imposées, rayonnement).

L'intérêt du test réside dans la prise en compte du rayonnement.

Les résultats sont comparés avec ceux fournis par NAFEMS.


Révision: 5407

Titre: TPNL300 - Transfert de chaleur unidimensionnel ave[...]

Date: 01/02/2011 Page: 2/8 Responsable: Jessica HAELEWYN Clé: V4.42.300

Problème de référence

Géométrie

Propriétés du matériau 1.2

Conductivité thermique $\lambda = 55.6 W/m \circ C$ $c = 460.J/kg \circ C$ Chaleur spécifique $\rho = 7850 \, kg / m^3$ Masse volumique

Conditions aux limites et chargements 1.3

•température imposée au point $A: T_A = 726.85 \,^{\circ} C$,

ullet échange par rayonnement au point B :

•température extérieure $T_e = 26.85 \,^{\circ}C$,

• $\varepsilon = 0.98$ émissivité,

• $\sigma = 5.67.10^{-8} W/m^2 K^4$ (constante de Stefan-Boltzman).

Conditions initiales 1.4

Sans objet.

Date: 01/02/2011 Page: 3/8 Responsable: Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

Solution de référence

Méthode de calcul utilisée pour la solution de référence 2.1

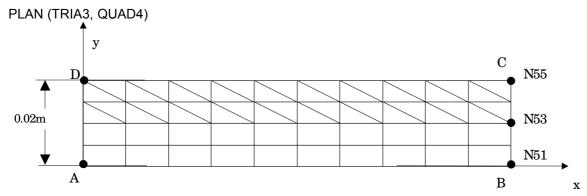
La solution de référence est celle donnée dans la fiche "TEST n°2" des tests de référence publiés par NAFEMS.

2.2 Résultats de référence

Température au point $B: T=653.85^{\circ}C$

2.3 Incertitude sur la solution

Non disponible sur la fiche NAFEMS.


2.4 Références bibliographiques

•NAFEMS (the National Agency for Finite Element Methods and Standard (UK)): "The standard NAFEMS Benchmarcks", TNSB rév 3, October 1990.

Date: 01/02/2011 Page: 4/8 Responsable: Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

3 Modélisation A

3.1 Caractéristiques de la modélisation

Conditions aux limites:

- Coté AD: $T=726.85^{\circ}\mathrm{C}$

- Cotés AB, CD: $\varphi = 0$

- Coté BC: T_{ext} =26.85°C

 $\varepsilon = 0.98$

Caractéristiques du maillage 3.2

Nombre de nœuds :

Nombre de mailles et types : 60: (20 QUAD4, 40 TRIA3)

Date: 01/02/2011 Page: 5/8 Responsable : Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

Résultats de la modélisation A

4.1 Valeurs testées

Identification	Référence	Aster	% différence	tolérance
Température au point B				_
en °C				
N51	653.85	653.87	0.003	2%
N53	653.85	653.87	0.003	2%
N55	653.85	653.87	0.003	2%

Titre: TPNL300 - Transfert de chaleur unidimensionnel ave[...] Date: 01/02/2011 Page: 6/8

Responsable: Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

Modélisation B 5

5.1 Caractéristiques de la modélisation

3D (HEXA8) 0.02mу N91 0.02mN97 Conditions aux limites: N92 - face x = 0T=726.85°C N98 - face x = 0.1 $T_{ext}=26.85^{\circ}C$ $\varepsilon = 0.98$

- autres faces

 $\varphi = 0$

5.2 Caractéristiques du maillage

Nombre de nœuds :

Nombre de mailles et types : **40 HEXA8**

Responsable : Jessica HAELEWYN

Date : 01/02/2011 Page : 7/8 Clé : V4.42.300 Révision : 5407

6 Résultats de la modélisation B

6.1 Valeurs testées

Identification	Référence	Aster	% différence	tolérance
Température au point B				
en °C			,	
N91	653.85	653.87	0.003	2%
N92	653.85	653.87	0.003	2%
N97	653.85	653.87	0.003	2%
N98	653,85	653.87	0.003	2%

Version default

Titre: TPNL300 - Transfert de chaleur unidimensionnel ave[...]

Date: 01/02/2011 Page: 8/8 Responsable: Jessica HAELEWYN Clé: V4.42.300 Révision: 5407

Synthèse des résultats

Ce test est recommandé par NAFEMS (mais avec un autre type de maillage). Les deux modélisations donnent des résultats très satisfaisants, l'écart maximum obtenu est de 0.003%.

Pour la modélisation PLAN, malgré la non-symétrie du maillage, on constate que la température aux nœuds (points d'observation) appartenant au TRIA3 et au QUAD4 est identique.

La condition limite de rayonnement a été imposée via un chargement de flux non linéaire (flux fonction de la température). Dans ce test la prise en compte du rayonnement est tout à fait correcte.

Ce test à permis de tester la commande AFFE_CHAR_THER_F (associé à l'opérande FLUX_NL qui permet d'affecter un flux non_linéaire) dans le cas de modélisations PLAN et 3D.