Révision: 5405

Date: 01/02/2011 Page: 1/6

Titre : TTLV301 - Parallélépipède soumis à une température[...]

Responsable : Jessica HAELEWYN Clé : V4.25.301

TTLV301 - Parallélépipède soumis à une température imposée sur ses faces

Résumé:

Ce test est issu de la validation indépendante de la version 3 en thermique transitoire linéaire.

Il s'agit d'un problème volumique représenté par une seule modélisation (3D).

Les fonctionnalités testées sont les suivantes :

- •élément thermique volumique,
- •algorithme de thermique transitoire,
- •conditions limites : température imposée.

Les résultats sont comparés à une solution analytique.

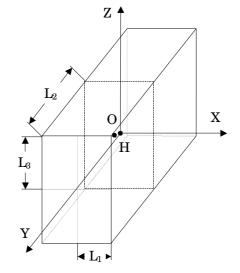
Titre: TTLV301 - Parallélépipède soumis à une température[...]

Responsable : Jessica HAELEWYN

Date: 01/02/2011 Page: 2/6 Clé: V4.25.301 Révision: 5405

1 Problème de référence

1.1 Géométrie


Dimensions du parallélépipède: 2m x 3.2m x 4m

$$-L_1 = 1.0 \text{ m}$$

$$-L_2 = 1.6 \text{ m}$$

$$-L_3 = 2.0 \text{ m}$$

Point O (0.,0.,0.) Point H (0.5,0.8,1.0)

1.2 Propriétés du matériau

$$\lambda = 1.W/m \circ C$$

conductivité thermique

$$c_p = 1.J/kg \circ C$$

chaleur spécifique

$$\rho = 1.kg/m^3$$

masse volumique

1.3 Conditions aux limites et chargements

Température imposée sur les 6 faces $T = 2 \circ C = T_{w}$

1.4 Conditions initiales

$$T(t=0)=1 \circ C = T_0$$

Titre: TTLV301 - Parallélépipède soumis à une température[...]

Date: 01/02/2011 Page: 3/6 Responsable: Jessica HAELEWYN Clé: V4.25.301 Révision: 5405

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

$$\begin{split} T_{(x,y,z,t)} &= T_w + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{l=1}^{\infty} a_{nml} \exp\left(-\kappa_{mnl}^2 \alpha.t\right) T \cos_{(x,y,z,m,n,l)} \\ &\text{avec } T \cos_{(x,y,z,m,n,l)} = \cos\left(\frac{(2\,m-1)\,\pi\,x}{2\,L_1}\right) \cos\left(\frac{(2\,n-1)\,\pi\,y}{2\,L_2}\right) \cos\left(\frac{(2\,l-1)\,\pi\,z}{2\,L_3}\right) \\ &a_{mnl} &= \frac{64(T_0 - T_w)}{\pi^3(2\,m-1)(2\,n-1)(2\,l-1)} \sin\left(\frac{(2\,m-1)\,\pi}{2}\right) \sin\left(\frac{(2\,n-1)\,\pi}{2}\right) \sin\left(\frac{(2\,l-1)\,\pi}{2}\right) \\ &\kappa_{mnl} &= \left(\frac{(2\,m-1)\,\pi}{2\,L_1}\right)^2 + \left(\frac{(2\,n-1)\,\pi}{2\,L_2}\right)^2 + \left(\frac{(2\,l-1)\,\pi}{2\,L_3}\right)^2 \\ &\alpha &= \frac{\lambda}{\rho\,c_p} \end{split}$$

Les valeurs de référence sont obtenues avec m=n=l=100.

2.2 Résultats de référence

Température aux points : O(0.0.0) et H(0.5.0.8.1.)

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

•M.J Chang, L.C Chow, W.S Chang, "Improved alternating direction implicit for solving transient three dimensional heat diffusion problems", Numerical Heat Transfer, vol 19, pp 69-84, 1991.

Titre: TTLV301 - Parallélépipède soumis à une température[...] Date: 01/02/2011 Page: 4/6

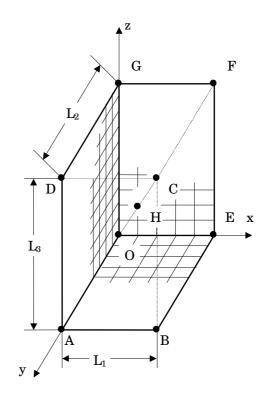
Responsable: Jessica HAELEWYN Clé: V4.25.301 Révision: 5405

Modélisation A 3

3.1 Caractéristiques de la modélisation

3D (HEXA27)

Modélisation 1/8 du parallélépipède


Maillage:

- 5 éléments suivant x
- 8 éléments suivant y
- 10 éléments suivant z

Conditions limites:

- faces [ABCD], [BEFC], [DCFG]: $T = 2^{\circ}C$ - faces [ABEO], [AOGD], [OEFG]: $\varphi = 0$.

Points	X	у	Z	Noeud
О	0.00	0.00	0.00	N5
H	0.50	0.80	1.00	N1075

3.2 Caractéristiques du maillage

Nombre de nœuds :

Nombre de mailles et types : 400 HEXA27

3.3 Remarques

La condition limite $\varphi = 0$, est implicite sur les bords libres.

Discrétisation du temps : 24 intervalles entre 0, et 1.2 s :

: 4 intervalles de 0.005 secondes. de t = 0.00 $\dot{a} t = 0.02$ de t = 0.02 $\dot{a} t = 0.05$ 3 intervalles de 0.01 secondes. intervalles de 0.025 de t = 0.05 $\dot{a} t = 0.15$: 4 secondes. : 5 intervalles de 0.05 secondes. de t = 0.15 $\dot{a} t = 0.4$: 8 de t=0.4intervalles de 0.1 secondes. $\dot{a} t = 1.2$

Titre : TTLV301 - Parallélépipède soumis à une température[...]

Responsable : Jessica HAELEWYN

Date : 01/02/2011 Page : 5/6 Clé : V4.25.301 Révision : 5405

4 Résultats de la modélisation A

4.1 Valeurs testées

Identification	Référence	Aster	% différence	Tolérance
Point O				
<i>N5</i> (0.,0.,0.)				
t = 0.1 s	1.05137	1.04934	-0.193	1%
t = 0.2 s	1.24768	1.24181	-0.471	1%
t = 0.3 s	1.45136	1.44378	-0.522	1%
t = 0.5 s	1.73684	1.72955	-0.420	1%
t = 0.7 s	1.88010	1.87516	-0.263	1%
t = 1.0 s	1.96406	1.96191	-0.110	1%
t = 1.2 s	1.98398	1.98282	-0.059	1%
Point <i>H</i>				
N1075 (0.5,0.8,1.0)				
t=0.1 s	1.33579	1.32490	-0.816	1%
t = 0.2 s	1.61081	1.60337	-0.462	1%
t = 0.3 s	1.75959	1.75424	-0.304	1%
t = 0.5 s	1.90017	1.89718	-0.157	1%
t = 0.7 s	1.95657	1.95478	-0.091	1%
t = 1.0 s	1.98723	1.98646	-0.039	1%
t = 1.2 s	1.99433	1.99391	-0.021	1%

Révision: 5405

Titre: TTLV301 - Parallélépipède soumis à une température[...]

Date: 01/02/2011 Page: 6/6 Responsable: Jessica HAELEWYN Clé: V4.25.301

Synthèse des résultats 5

Les résultats obtenus sont satisfaisants. L'écart maximum obtenu (0.816%), est situé au point Hplacé à mi-distance entre la surface extérieure et le centre du parallélépipède. Au bout de 1.2s, cet écart diminue, le maximum obtenu est alors de 0.059% (point O : centre du parallélépipède).

Ce test a permis de tester en linéaire transitoire la modélisation 3D avec des mailles HEXA27.