Date: 01/02/2011 Page: 1/12

Clé: V4.22.303

Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

TTNL303 - Mur infini soumis à un saut de température avec propriétés variables

Résumé:

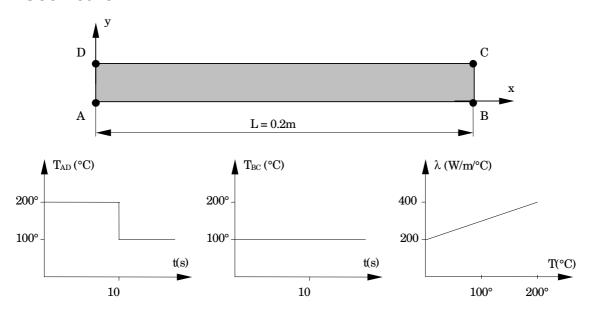
Ce test est issu de la validation indépendante de la version 3 en thermique transitoire non linéaire.

Il s'agit d'un problème 1D linéique représenté par quatre modélisations, deux planes et deux volumiques.

Les fonctionnalités testées sont les suivantes :

- •élément thermique plan,
- •élément thermique volumique,
- •conductivité thermique variable,
- •algorithme thermique transitoire non-linéaire,
- •conditions limites : température imposée avec saut.

L'intérêt du test réside dans la prise en compte de propriétés variables en analyse transitoire et de la variation des températures imposées en fonction du temps.


Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

Date: 01/02/2011 Page: 2/12 Clé: V4.22.303 Révision: 5397

1 Problème de référence

1.1 Géométrie

1.2 Propriétés du matériau

$$\lambda = 200 + T(W/m \circ C)$$

$$\rho C = 8.10^{6} (J/m^{3} \circ C)$$

conductivité thermique chaleur volumique

1.3 Conditions aux limites et chargements

$$x=0$$

$$T = 200 \,^{\circ} C$$
 $0 < t \le 10 \, s$
 $T = 100 \,^{\circ} C$ $t > 10 \, s$

$$x = L$$

$$T = 100 \,^{\circ} C$$

$$t \ge 0 s$$

1.4 Conditions initiales

$$T(x,0)=100 \,^{\circ}C$$
 pour tout x

Titre: TTNL303 - Mur infini soumis à un saut de températu[...]

Date: 01/02/2011 Page: 3/12 Responsable: Jessica HAELEWYN Clé: V4.22.303 Révision: 5397

Solution de référence

Méthode de calcul utilisée pour la solution de référence 2.1

La solution de référence a été obtenue avec le logiciel de calcul par éléments finis "IVOHEAT" [bib2] citée dans la référence [bib1]. Cette solution est basée sur maillage constitué de 20 éléments isoparamètriques à 4 nœuds de taille identique, en utilisant une méthode de Crank-Nicolson modifiée avec une précision de 10^{-6} .

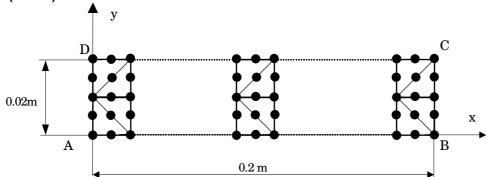
Résultats de référence 2.2

Température à :

- t = 10 s pour x = 0.01, 0.02, 0.04, 0.06, 0.08 et 0.1,
- t = 13 s pour x = 0.01, 0.02, 0.04, 0.06, 0.08 et 0.1.

2.3 Références bibliographiques

- •S. Orivuori, "Efficient method for solution of nonlinear heat conduction problems", Int. J. num. Meth. Engng, vol 14, n°10, pp 1461-1476, 1979
- •S. Orivuori, "A finite element method applied to the solution of the transient heat conduction problem', Licentiate Thesis, Tech. Univ., Helsinki (1977), in Finnish.


Titre : TTNL303 - Mur infini soumis à un saut de températu[...] Date : 01/02/2011 Page : 4/12

Responsable : Jessica HAELEWYN Clé : V4.22.303 Révision : 5397

3 Modélisation A

3.1 Caractéristiques de la modélisation

PLAN (TRIA6)

Conditions limites:

Noeuds	X	У
N11	0.01	0.00
N21	0.02	0.00
N41	0.04	0.00
N61	0.06	0.00
N81	0.08	0.00
N101	0.10	0.00

3.2 Caractéristiques du maillage

Nombre de nœuds : 205 Nombre de mailles et types : 80 TRIA6

3.3 Remarques

[0., 1.D - 3]	soit	$\Delta t = 1.D^{-4}$
[1.D-3, 1.D-2]	soit	$\Delta t = 1.D^{-3}$
[1.D-2, 1.D-1]	soit	$\Delta t = 1.D^{-2}$
[1.D-1, 1.D0]	soit	$\Delta t = 1.D^{-1}$
[1.D0, 10.D0]	soit	$\Delta t = 1.0$
[10.D0, 13.D0]	soit	$\Delta t = 1.0$
	[1.D-3,1.D-2] [1.D-2,1.D-1] [1.D-1,1.D0] [1.D0,10.D0]	$ \begin{bmatrix} 1.D-3 & 1.D-2 \end{bmatrix} & \text{soit} \\ [1.D-2 & 1.D-1] & \text{soit} \\ [1.D-1 & 1.D0] & \text{soit} \\ [1.D0 & 10.D0] & \text{soit} \\ \end{bmatrix} $

Titre: TTNL303 - Mur infini soumis à un saut de températu[...]
Responsable: Jessica HAELEWYN

Date: 01/02/2011 Page: 5/12 Clé: V4.22.303 Révision: 5397

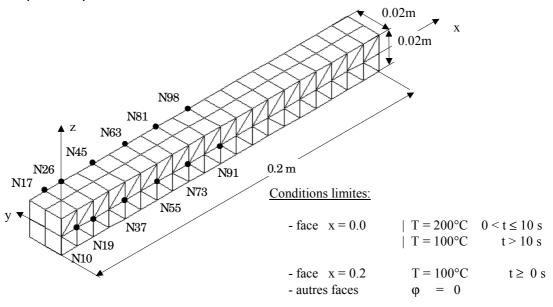
4 Résultats de la modélisation A

4.1 Valeurs testées

Identification	Référence	Aster	% différence	tolérance
Température (° C) à $t=10s$				
N11	176.165	174.954	-0.687	2%
N21	153.213	151.049	-1.412	2%
N41	118.600	116.576	-1.707	2%
N61	103.715	103.195	-0.502	2%
N81	100.368	100.417	0.049	2%
N101	100.014	100.088	0.074	2%
Température (° C) à $t=13 s$				
N11	128.125	128.377	0.197	2%
N21	139.970	139.846	-0.089	2%
N41	124.719	122.209	-2.013	2%
N61	107.182	106.279	-0.842	2%
N81	101.290	101.186	-0.103	2%
N101	100.134	100.203	0.067	2%

Date: 01/02/2011 Page: 6/12

Clé: V4.22.303


Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

5 Modélisation B

5.1 Caractéristiques de la modélisation

3D (PENTA6)

5.2 Caractéristiques du maillage

Nombre de nœuds : 189

Nombre de mailles et types : 160 PENTA6

5.3 Remarques

10 pas pour	[0., 1.D - 3]	soit	$\Delta t = 1.D^{-4}$
9 pas pour	[1.D-3,1.D-2]	soit	$\Delta t = 1.D^{-3}$
9 pas pour	[1.D-2, 1.D-1]	soit	$\Delta t = 1.D^{-2}$
9 pas pour	[1.D-1, 1.D0]	soit	$\Delta t = 1.D^{-1}$
9 pas pour	[1.D0, 10.D0]	soit	$\Delta t = 1.0$
3 pas pour	[10.D0, 13.D0]	soit	$\Delta t = 1.0$

Titre: TTNL303 - Mur infini soumis à un saut de températu[...]

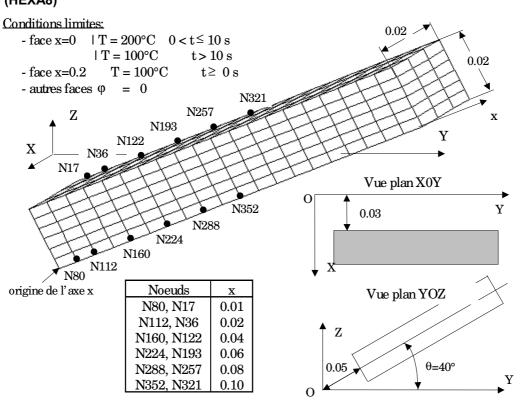
Date: 01/02/2011 Page: 7/12 Responsable: Jessica HAELEWYN Clé: V4.22.303 Révision: 5397

Résultats de la modélisation B 6

6.1 Valeurs testées

Identification	Référence	Aster	% différence	tolérance
Température (° C) à $t=10s$				
N10	176.165	175.087	-0.612	2%
N17	176.165	174.910	-0.713	2%
N19	153.213	151.182	-1.326	2%
N26	153.213	151.020	-1.431	2%
N37	118.600	116.314	-1.928	2%
N45	118.600	116.379	-1.872	2%
N55	103.715	102.759	-0.921	2%
N63	103.715	102.892	-0.793	2%
N73	100.368	100.239	-0.129	2%
N81	100.368	100.285	-0.083	2%
N91	100.014	100.060	0.046	2%
N98	100.014	100.066	0.052	2%
Température (° C) à $t=13 s$				
N10	128.125	129.395	0.991	2%
N17	128.125	128.291	0.130	2%
N19	139.970	139.819	-0.108	2%
N26	139.970	140.209	-0.171	2%
N37	124.719	122.986	-1.390	2%
N45	124.719	122.569	-1.724	2%
N55	107.182	105.967	-1.134	2%
N63	107.182	106.050	-1.056	2%
N73	101.290	100.945	-0.341	2%
N81	101.290	101.005	-0.282	2%
N91	100.134	100.126	0.008	2%
N98	100.134	100.142	0.008	2%

Date: 01/02/2011 Page: 8/12


Clé: V4.22.303

Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

Modélisation C

7.1 Caractéristiques de la modélisation 3D (HEXA8)

7.2 Caractéristiques du maillage

Nombre de nœuds : 588

Nombre de mailles et types : 360 HEXA8

7.3 Remarques

10 pas pour	[0., 1.D-3]	soit	$\Delta t = 1.D^{-4}$
9 pas pour	[1.D-3,1.D-2]	soit	$\Delta t = 1.D^{-3}$
9 pas pour	[1.D-2, 1.D-1]	soit	$\Delta t = 1.D^{-2}$
9 pas pour	[1.D-1, 1.D0]	soit	$\Delta t = 1.D^{-1}$
9 pas pour	[1.D0, 10.D0]	soit	$\Delta t = 1.0$
3 pas pour	[10.D0, 13.D0]	soit	$\Delta t = 1.0$

Titre: TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

Date : 01/02/2011 Page : 9/12 Clé : V4.22.303 Révision : 5397

8 Résultats de la modélisation C

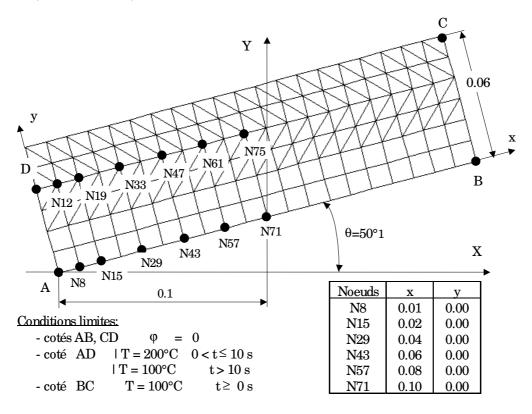
8.1 Valeurs testées

			Ecart relatif %		Ecart Absolu	ı
Identification	Référence	Aster	différence	tolérance	différence	tolérance
Température $(\circ C)$						
t=10 s						
N80	176.165	174.992	-0.666	2%	-1.17	3.0
N17	176.165	174.992	-0.666	2%	-1.17	3.0
N112	153.213	151.092	-1.384	2%	-2.12	3.0
N36	153.213	151.092	-1.384	2%	-2.12	3.0
N160	118.600	116.331	-1.913	2%	-2.27	3.0
N122	118.600	116.331	-1.913	2%	-2.27	3.0
N224	103.715	102.817	-0.866	2%	-0.898	3.0
N193	103.715	102.817	-0.866	2%	-0.898	3.0
N288	100.368	100.265	-0.102	2%	-0.103	3.0
N257	100.368	100.265	-0.102	2%	-0.103	3.0
N352	100.014	100.066	0.052	2%	0.052	3.0
N321	100.014	100.066	0.052	2%	0.052	3.0
t = 13 s						
N80	128.125	128.829	0.550	2%	0.704	3.0
N17	128.125	128.829	0.550	2%	0.704	3.0
N112	139.970	139.893	-0.055	2%	-0.077	3.0
N36	139.970	139.893	-0.055	2%	-0.077	3.0
N160	124.719	122.718	-1.605	2%	-2.00	3.0
N122	124.719	122.718	-1.605	2%	-2.00	3.0
N224	107.182	105.988	-1.114	2%	-1.19	3.0
N193	107.182	105.988	-1.114	2%	-1.19	3.0
N288	101.290	100.974	-0.312	2%	-0.316	3.0
N257	101.290	100.974	-0.312	2%	-0.316	3.0
N352	100.134	100.136	0.002	2%	0.002	3.0
N321	100.134	100.136	0.002	2%	0.002	3.0

Date: 01/02/2011 Page: 10/12

Clé: V4.22.303

9


Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN

Modélisation D

9.1 Caractéristiques de la modélisation

PLAN (TRIA3, QUAD4)

9.2 Caractéristiques du maillage

Nombre de nœuds : 147

Nombre de mailles et types : 200 (40 QUAD4, 160 TRIA3)

9.3 Remarques

10 pas pour	[0., 1.D-3]	soit	$\Delta t = 1.D^{-4}$
9 pas pour	[1.D-3, 1.D-2]	soit	$\Delta t = 1.D^{-3}$
9 pas pour	[1.D-2, 1.D-1]	soit	$\Delta t = 1.D^{-2}$
9 pas pour	[1.D-1, 1.D0]	soit	$\Delta t = 1.D^{-1}$
9 pas pour	[1.D0, 10.D0]	soit	$\Delta t = 1.0$
3 pas pour	[10.D0, 13.D0]	soit	$\Delta t = 1.0$

Titre : TTNL303 - Mur infini soumis à un saut de températu[...]
Responsable : Jessica HAELEWYN

Date : 01/02/2011 Page : 11/12 Clé : V4.22.303 Révision : 5397

10 Résultats de la modélisation D

10.1 Valeurs testées

			Ecart relatif %		Ecart Absolu	ı
Identification	Référence	Aster	différence	tolérance	différence	tolérance
Température						
(°C)						
t=10 s						
N8	176.165	174.997	-0.663	2%	-1.17	3.0
N12	176.165	175.154	-0.574	2%	-1.01	3.0
N15	153.213	151.117	-1.368	2%	-2.10	3.0
N19	153.213	151.246	-1.284	2%	-1.97	3.0
N29	118.600	116.416	-1.842	2%	-2.18	3.0
N33	118.600	116.246	-1.985	2%	-2.35	3.0
N43	103.715	102.884	-0.801	2%	-0.831	3.0
N47	103.715	102.664	-1.014	2%	-1.05	3.0
N57	100.368	100.283	-0.084	2%	-0.085	3.0
N61	100.368	100.208	-0.159	2%	-0.160	3.0
N71	100.014	100.067	0.053	2%	0.053	3.0
N75	100.014	100.057	0.043	2%	0.044	3.0
t=13 s						
N8	128.125	128.512	0.302	2%	0.387	3.0
N12	128.125	129.103	0.764	2%	0.978	3.0
N15	139.970	139.689	-0.201	2%	-0.281	3.0
N19	139.970	140.233	0.188	2%	0.263	3.0
N29	124.719	122.723	-1.601	2%	-2.00	3.0
N33	124.719	123.198	-1.220	2%	-1.52	3.0
N43	107.182	106.051	-1.055	2%	-1.13	3.0
N47	107.182	105.887	-1.209	2%	-1.30	3.0
N57	101.290	101.004	-0.282	2%	-0.286	3.0
N61	101.290	100.902	-0.383	2%	-0.388	3.0
N71	100.134	100.143	0.009	2%	0.009	3.0
N75	100.134	100.116	0.018	2%	0.018	3.0

Version default

Date: 01/02/2011 Page: 12/12

Titre : TTNL303 - Mur infini soumis à un saut de températu[...]

Responsable : Jessica HAELEWYN Clé : V4.22.303 Révision : 5397

11 Synthèse des résultats

Une modélisation parmi les quatre modélisations effectuées donnent des résultats dont une valeur dépasse de peu la tolérance fixée initialement (2%). L'écart maximum est de :

- •2.013% pour la modélisation PLAN (TRIA6),
- •1.928% pour la modélisation 3D (PENTA6).
- •1.913% pour la modélisation 3D (HEXA8),
- •1.985% pour la modélisation PLAN (TRIA3, QUAD4).

On constate que cet écart est quel que soit la modélisation proche de 2%, toutes les modélisations effectuées, ont le même découpage dans le sens de propagation de la température.

Les résultats obtenus sont considérés comme acceptables pour l'ensemble des modélisations

Ce test a permis de tester la prise en compte d'une conductivité thermique variable avec une condition limite variant au cours du temps.