Révision: 5441

Date: 02/02/2011 Page: 1/8

Clé: V4.05.301

Titre : TPLP301 - Plaque carrée avec température imposée r[...]
Responsable : Jessica HAELEWYN

TPLP301 - Plaque carrée avec température imposée répartie sinusoïdalement

Résumé:

Ce test est issu de la validation indépendante de la version 3 en thermique stationnaire linéaire.

Il s'agit d'un problème 2D plan représenté par deux modélisations, l'une plane, la deuxième coque.

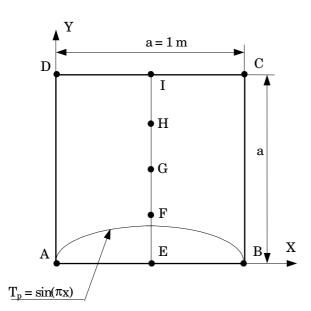
Les fonctionnalités testées sont les suivantes :

- · élément thermique plan,
- · élément thermique coque,
- conditions limites : distribution sinusoïdale de la température imposée

Les résultats sont comparés avec une solution analytique.

Révision: 5441

Date: 02/02/2011 Page: 2/8


Clé: V4.05.301

Titre : TPLP301 - Plaque carrée avec température imposée r[...]

Responsable : Jessica HAELEWYN

1 Problème de référence

1.1 Géométrie

Points	X	Y
E	0.5	0.00
F	0.5	0.25
G	0.5	0.50
Н	0.5	0.75
I	0.5	1.00

1.2 Propriétés du matériau

 $\lambda = 1. W/m. \circ C$ Conductivité thermique

1.3 Conditions aux limites et chargements

- côté [AB] température imposée $T_p = \sin(\pi x)$,
- côté [BC] température imposée $T_0^{'}=0\,^{\circ}$,
- côté [CD] température imposée $T_0 = 0$ °
- côté [BA] température imposée $T_0 = 0$ ° .

1.4 Conditions initiales

Sans objet.

Titre: TPLP301 - Plaque carrée avec température imposée r[...]

Date: 02/02/2011 Page: 3/8 Responsable: Jessica HAELEWYN Clé: V4.05.301 Révision: 5441

Solution de référence 2

2.1 Méthode de calcul utilisée pour la solution de référence

Solution analytique:

$$T(x, y) = \sinh[\pi(1.0-y)]\sin(pix)/\sinh(\pi)$$

2.2 Résultats de référence

Température aux points E, F, G, H, I

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références

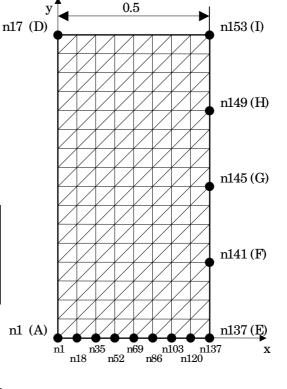
[1] W.K. Liu, T. Belytschko, "Efficient linear and nonlinear heat conduction with a quadrilateral element", Int. J. num. Meth. Engng, vol 20, n°5, pp 931-948, 1984.

Titre : TPLP301 - Plaque carrée avec température imposée r[...]

Responsable : Jessica HAELEWYN

Date : 02/02/2011 Page : 4/8 Clé : V4.05.301 Révision : 5441

3 Modélisation A


3.1 Caractéristiques de la modélisation

COQUE (TRIA3)

 $\begin{array}{ll} -\cot \acute{e} \, AE & T = \sin(\pi x) \\ -\cot \acute{e} \, JD, \, DA & T = 0^{\circ} C \\ -\cot \acute{e} \, EJ: & \phi = 0 \end{array}$

Point	X	у	Noeud
\mathbf{E}	0.5	0.	n137
\mathbf{F}	0.5	0.25	n141
G	0.5	0.5	n145
H	0.5	0.75	n149
I	0.5	1.	n153

3.2 Caractéristiques du maillage

Nombre de nœuds : 153 Nombre de mailles et types : 256 TRIA3

3.3 Remarques

La température imposée, répartie sinusoïdalement sur AE, est entrée nœud par nœud.

La donnée de la chaleur volumique C_P est obligatoire pour $Code_Aster$ (bien que sans influence dans cette simulation). On prend $C_P = 1.J/m^3 \circ C$.

La condition limite $\varphi = 0$ est implicite sur les bords libres.

3.4 Grandeurs testées et résultats

		Identifi	cation	Type de référence	Référence	tolérance
Temp	oérature	(°C)				
$_E$	Nœud	n137	peau inférieure	ANALYTIQUE	1.0	1%
\overline{E}	Nœud	n137	peau moyenne	ANALYTIQUE	1.0	1%
\overline{E}	Nœud	n137	peau supérieure	ANALYTIQUE	1.0	1%
\overline{F}	Nœud	n141	peau inférieure	ANALYTIQUE	0.45269	1%
\overline{F}	Nœud	n141	peau moyenne	ANALYTIQUE	0.45269	1%

Manuel de validation

Code_Aster

Titre : TPLP301 - Plaque carrée avec température imposée r[...]

Date : 02/02/2011 Page : 5/8

Responsable : Jessica HAELEWYN

Clé : V4.05.301 Révision : 5441

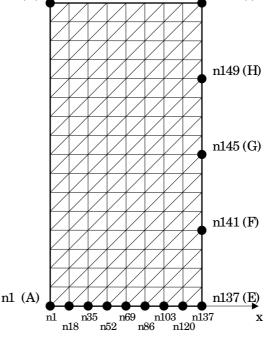
\overline{F}	Nœud	n141	peau supérieure	ANALYTIQUE	0.45269	1%
\overline{G}	Nœud	n145	peau inférieure	ANALYTIQUE	0.19927	1%
\overline{G}	Nœud	n145	: peau moyenne	ANALYTIQUE	0.19927	1%
G	Nœud	n145	: peau supérieure	ANALYTIQUE	0.19927	1%
\overline{H}	Nœud	n149	: peau inférieure	ANALYTIQUE	0.07522	1%
\overline{H}	Nœud	n149	: peau moyenne	ANALYTIQUE	0.07522	1%
\overline{H}	Nœud	n149	: peau supérieure	ANALYTIQUE	0.07522	1%
I	Nœud	n153	: peau inférieure	ANALYTIQUE	0.0	1.E-4
I	Nœud	n153	: peau moyenne	ANALYTIQUE	0.0	1.E-4
\overline{I}	Nœud	n153	: peau supérieure	ANALYTIQUE	0.0	1.E-4

Titre: TPLP301 - Plaque carrée avec température imposée r[...]

Date: 02/02/2011 Page: 6/8 Responsable: Jessica HAELEWYN Clé: V4.05.301 Révision: 5441

n17 (D)

Modélisation B 4


4.1 Caractéristiques de la modélisation

PLAN (TRIA3)

- coté AE $T = \sin(\pi x)$ - coté JD, DA T = 0°C
- coté EJ: $\varphi = 0$

Point	X	У	Noeud
\mathbf{E}	0.5	0.	n137
\mathbf{F}	0.5	0.25	n141
G	0.5	0.5	n145
H	0.5	0.75	n149
I	0.5	1.	n153

0.5

n153 (I)

4.2 Caractéristiques du maillage

Nombre de nœuds : 153 Nombre de mailles et types : **256** TRIA3

4.3 Remarques

La donnée de la chaleur volumique C_P est obligatoire pour $Code_Aster$ (bien que sans influence dans cette simulation). On prend $C_P = 1.J/m^3 \circ C$.

La condition limite $\varphi = 0$ est implicite sur les bords libres.

Grandeurs testées et résultats 4.4

Identification	Type de Référence	Référence	tolérance
Température $(\circ C)$			
<i>E</i> : Nœud <i>n137</i>	ANALYTIQUE	1.0	1%
F: Nœud $n141$	ANALYTIQUE	0.45269	1%
G: Nœud $n145$	ANALYTIQUE	0.19927	1%
H: Nœud $n149$	ANALYTIQUE	0.07522	1%
<i>I</i> : Nœud <i>n153</i>	ANALYTIQUE	0.0	1.E-4

Titre : TPLP301 - Plaque carrée avec température imposée r[...]

Responsable : Jessica HAELEWYN

Clé : V4.05.301 Révision : 5441

Date: 02/02/2011 Page: 7/8

Version default

Révision: 5441

Date: 02/02/2011 Page: 8/8

Titre : TPLP301 - Plaque carrée avec température imposée r[...]

Responsable : Jessica HAELEWYN Clé : V4.05.301

5 Synthèse des résultats

Les 2 modélisations effectuées, <code>COQUE</code> et <code>PLAN</code> avec des mailles <code>TRIA3</code> donnent des résultats satisfaisants, l'écart maximum obtenu est de $0.63\,\%$. Les résultats trouvés pour les deux modélisations sont identiques. L'intérêt de ce test est de comparer les résultats obtenus à une solution analytique.