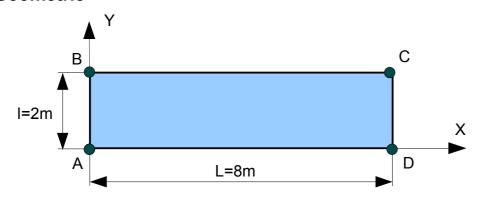
Date: 15/04/2013 Page: 1/8 Responsable: Xavier DESROCHES Clé: V4.03.102 Révision: 10861

TPLS102 – Poutre épaisse en contraintes planes – variation de température linéaire suivant la largeur

Résumé:

L'objectif de ce test est de valider le calcul des contraintes dans une poutre épaisse en contraintes planes soumise a une variation de la température suivant la largeur.

Modélisations:


Modélisation A: DKT avec des mailles TRIA3

Modélisation B: DKT avec des mailles QUAD4

Date: 15/04/2013 Page: 2/8 Responsable: Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Problème de référence

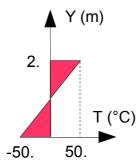
1.1 Géométrie

Épaisseur = 0.1m.

1.2 Propriétés du matériau

Le matériau est élastique isotrope dont les propriétés sont :

- $E = 20\,000\,Pa$
- $\nu = 0.3$
- $\alpha = 10^{-5} / \circ C$


Conditions aux limites et chargements 1.3

Conditions aux limites :

- Sur les bords AB et CD : DX = DZ = 0
- Sur le bord BC: DY = 0

Chargement

- Le chargement appliqué est un chargement de température
 - Constant suivant X et Z
 - Variable suivant l'axe Y: T(Y) = 50Y 50

Conditions initiales 1.4

Néant

Date: 15/04/2013 Page: 3/8

Titre: TPLS102 – Poutre épaisse en contraintes planes – v[...]

Responsable : Xavier DESROCHES Clé : V4.03.102 Révision : 10861

2 Solution de référence

2.1 Méthode de calcul

La solution de référence pour le calcul des contraintes dans la poutre est donnée dans [1], [2].

2.2 Grandeurs et résultats de référence

Contraintes σ_{xx} , σ_{yy} et σ_{xy} suivant l'axe Y .

$$\sigma_{rr}(Y) = -10Y + 10$$

$$\sigma_{vv}(Y)=0.$$

$$\sigma_{xv}(Y)=0.$$

Y(m)	$\sigma_{\scriptscriptstyle xx}$	$\sigma_{_{yy}}$	σ_{xy}
0.0	10.0 Pa	0.0 Pa	0.0 Pa
0.5	5.0 Pa	0.0 Pa	0.0 Pa
1.0	0.0 Pa	0.0 Pa	0.0 Pa
1.5	-5.0 Pa	0.0 Pa	0.0 Pa
2.0	-10.0 Pa	0.0 Pa	0.0 Pa

2.3 Incertitudes sur la solution

Solution Analytique

2.4 Références bibliographiques

- [1] M.H. SADR-LAHIDJANI :"Modélisation et analyse des plaques et coques minces élastiques soumises a des champs de température", Thèse de Doctorat UTC, 1984.
- [2] J. PITER, HARTEL H. "Improved stress evaluation under thermal load for simple finite element", I.J.N.M.E, Vol. 15, 1507-1515, 1980.

Date: 15/04/2013 Page: 4/8 Responsable: Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Modélisation A 3

3.1 Caractéristiques de la modélisation

On utilise une modélisation DKT avec 3 couches dans l'épaisseur.

Caractéristiques du maillage 3.2

Le maillage contient 2048 éléments de type TRIA3.

Grandeurs testées et résultats 3.3

On teste les contraintes sur la peau inférieure, moyenne et supérieure dans deux couches.

Couche n°1: -0.05 m < Z < -0.0167 m

Identification			Type de référence	Valeur de référence	Tolérance
INF	X = 0.0 m	SIXX	'ANALYTIQUE'	10.	2.0%
	Y=0.0m	SIYY	'ANALYTIQUE'	0.	0.6
	Z = -0.05 m	SIXY	'ANALYTIQUE'	0.	0.05
МОУ	X = 0.0 m Y = 1.0 m Z = -0.0333 m	SIXX	'ANALYTIQUE'	0.	0.05
		SIYY	'ANALYTIQUE'	0.	0.2
		SIXY	'ANALYTIQUE'	0.	0.0035
SUP	X = 0.0 m Y = 2.0 m Z = -0.0167 m	SIXX	'ANALYTIQUE'	-10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-6}

Date: 15/04/2013 Page: 5/8 Responsable : Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Couche n°3: 0.0167m < Z < 0.05m

Identification		Type de référence	Valeur de référence	Tolérance	
INF	X = 4.0 m Y = 0.0 m Z = 0.0167 m	SIXX	'ANALYTIQUE'	10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-4}
МОУ	X = 4.0 m Y = 1.0 m Z = 0.0333 m	SIXX	'ANALYTIQUE'	0.	10^{-4}
		SIYY	'ANALYTIQUE'	0.	10^{-4}
		SIXY	'ANALYTIQUE'	0.	10^{-3}
SUP	X = 4.0 m Y = 2.0 m Z = 0.05 m	SIXX	'ANALYTIQUE'	-10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-4}

Date: 15/04/2013 Page: 6/8 Responsable: Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Modélisation B 4

4.1 Caractéristiques de la modélisation

On utilise une modélisation DKT avec 5 couches dans l'épaisseur

Caractéristiques du maillage 4.2

Le maillage contient 1024 éléments de type QUAD4.

4.3 Grandeurs testées et résultats

On teste les contraintes sur la peau inférieure, moyenne et supérieure dans deux couches.

Couche n°2: -0.03m<Z<-0.01m

	Identification		Type de référence	Valeur de référence	Tolérance
INF	X = 0.0 m Y = 0.0 m Z = -0.03 m	SIXX	'ANALYTIQUE'	10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-6}
МОУ	X = 0.0m $Y = 1.0m$ $Z = -0.04m$	SIXX	'ANALYTIQUE'	0.	10^{-6}
		SIYY	'ANALYTIQUE'	0.	10^{-6}
		SIXY	'ANALYTIQUE'	0.	10^{-6}
SUP	X = 0.0 m Y = 2.0 m Z = -0.01 m	SIXX	'ANALYTIQUE'	-10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-6}

Date: 15/04/2013 Page: 7/8 Responsable : Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Couche n°5: 0.03m < Z < 0.05m

Identification		Type de référence	Valeur de référence	Tolérance	
INF	X = 4.0 m Y = 0.0 m Z = 0.03 m	SIXX	'ANALYTIQUE'	10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-6}
МОУ	X = 4.0m $Y = 1.0m$ $Z = 0.04m$	SIXX	'ANALYTIQUE'	0.	10^{-6}
		SIYY	'ANALYTIQUE'	0.	10^{-6}
		SIXY	'ANALYTIQUE'	0.	10^{-6}
SUP	X = 4.0 m Y = 2.0 m Z = 0.05 m	SIXX	'ANALYTIQUE'	-10.	1.5%
		SIYY	'ANALYTIQUE'	0.	0.5
		SIXY	'ANALYTIQUE'	0.	10^{-6}

Date: 15/04/2013 Page: 8/8 Responsable: Xavier DESROCHES Clé: V4.03.102 Révision: 10861

Synthèse des résultats 5

On constate pour la contrainte $\,\sigma_{_{xx}}\,$ un écart maximum de :

- •2.0% avec des mailles TRIA3
- •1.5% avec des mailles QUAD4.

Un maillage plus fin dans le sens de la variation de la température permettrait d'obtenir de meilleurs résultats.