Date: 13/01/2015 Page: 1/7

Titre: SSLX200 - Raccord 3D POU: Traction simple et flex[...]

Responsable : Jean-Luc FLÉJŌU Clé : V3.05.200 Révision : 12877

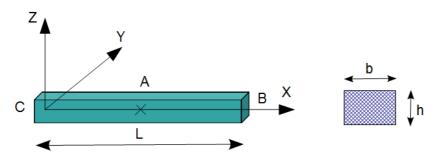
SSLX200 – Raccord 3D_POU: Traction simple et flexion pure d'une poutre encastrée-libre

Résumé:

L'objectif de ce test est de valider la prise en compte du raccord <code>3D_POU</code> (AFFE_CHAR_MECA). Ce raccord permet d'établir une liaison entre une modélisation de type poutre avec une modélisation de type volumique. Le cas-test represente une poutre :

- Dont une partie est modélisée avec des éléments volumiques et l'autre partie modélisée avec des éléments poutres,
- Encastrée a une extrémité et libre a l'autre extrémité,
- Soumise a des efforts de traction et de flexion.

Deux ty pes d'analyses sont effectuées :


- Analyse statique linéaire: on teste les déplacements et les contraintes dans le cas d'un chargement de traction et de flexion,
- Analyse dynamique : on teste les deux premiers modes de flexion.

Titre: SSLX200 - Raccord 3D POU: Traction simple et flex[...]

Date: 13/01/2015 Page: 2/7 Responsable : Jean-Luc FLÉJOU Clé: V3.05.200 Révision: 12877

Problème de référence

1.1 Géométrie

$$L = 10. m$$

$$b = 3.m$$

$$h=2.m$$

1.2 Propriétés du matériau

E = 200000. Pa Module d'Young

v = 0.3Coefficient de poisson

 $\rho = 10000 \, Kg/m^3$ Masse volumique

Conditions aux limites et chargements 1.3

Conditions aux limites

Point C: encastrement

Point B: libre

Chargements

FX = 10.NTraction

MY = 2. N.mFlexion simple

MZ = 3. N.mFlexion Simple

Conditions initiales

Sans

Date: 13/01/2015 Page: 3/7

Titre: SSLX200 - Raccord 3D POU: Traction simple et flex[...]

Responsable : Jean-Luc FLÉJOU Clé: V3.05.200 Révision: 12877

Solution de référence 2

2.1 Méthode de calcul

2.1.1 **Statique**

Déplacements en B

• Traction simple
$$u_x = \frac{F_x L}{E S}$$

• Flexion pure
$$u_z = -\frac{M_y L^2}{2EI_v}$$
 $\theta_y = \frac{M_y L}{EI_v}$

• Flexion pure
$$u_z = -\frac{M_y L^2}{2 E I_y} \qquad \theta_y = \frac{M_y L}{E I_y}$$
• Flexion pure
$$u_y = \frac{M_z L^2}{2 E I_z} \qquad \theta_z = \frac{M_z L}{E I_z}$$

Contrainte maximum en A

• Traction simple
$$\sigma_x = \frac{F_x}{S}$$

• Flexion pure
$$\sigma_{\rm x} \! = \! - \frac{M_{\rm y}}{\frac{2\,I_{\rm y}}{h}}$$

• Flexion pure
$$\sigma_{x} = -\frac{M_{z}}{\frac{2I_{z}}{b}}$$

Fréquences propres en flexion 2.1.2

$$\begin{aligned} &\text{Mode 1: } f_1 \!\!=\!\! \frac{3.516}{2\,L^2\,\pi} \sqrt{\frac{EI}{\rho\,S}} \\ &\text{Mode 2: } f_2 \!\!=\!\! \frac{22.0345}{2\,L^2\,\pi} \sqrt{\frac{EI}{\rho\,S}} \end{aligned}$$

2.2 Grandeurs et résultats de référence

2.2.1 **Statique**

Déplacements (m)

Point	DX	DY	DZ
В	8.3333×10^{-5}	1.6667×10^{-4}	-2.5×10^{-4}

Contraintes (N/m^2)

Titre: SSLX200 - Raccord 3D_POU: Traction simple et flex[...]

Date: 13/01/2015 Page: 4/7 Responsable : Jean-Luc FLÉJŌU Clé: V3.05.200 Révision : 12877

Point	SIXX	SIYY	SIZZ	SIXY	SIXZ	SIYZ
<i>A1</i> (5.0,1.5,-1.0)	-0.3333	0.	0.	0.	0.	0.
A2(5.0,1.5,1.0)	1.6667	0.	0.	0.	0.	0.

2.2.2 Fréquences propres en flexion

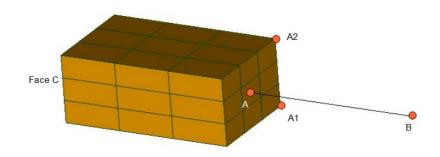
Mode	Fréquence Hz	
1	0.014449	
2	0.090549	

2.3 Incertitudes sur la solution

Solution analytique.

Date: 13/01/2015 Page: 5/7

Titre: SSLX200 - Raccord 3D POU: Traction simple et flex[...]


Responsable : Jean-Luc FLÉJOU Clé : V3.05.200 Révision : 12877

3 Modélisation A

3.1 Caractéristiques de la modélisation

On utilise une:

- Modélisation 3D et POU D E pour la poutre,
- Un élément DIS TR de type POI au point C,
- Liaison 3D POU au point A pour raccorder la poutre et la face du volume,
- Liaison 3D POU au point C pour raccorder l'élément DIS TR et la face du volume.

3.2 Caractéristiques du maillage

Le maillage contient 212 nœuds et 107 mailles dont :

- **2** SEG2
- 24 SEG3
- **54** QUAD8,
- **27** HEXA20.

3.3 Grandeurs testées et résultats

Déplacements

Identification		Type de référence	Valour do référence	Tolérance (%)	
Point	Grandeur	Type de référence	Valeur de référence	Tolerance (70)	
	DX	'ANALYTIQUE'	$8.3333 \times 10^{-5} m$	0.0001	
В	DY	'ANALYTIQUE'	$1.6667 \times 10^{-4} m$	0.0001	
	DZ	'ANALYTIQUE'	-2.5×10^{-4} m	0.0001	

Contraintes

Identification		Type de	Valeur de référence	Tolóranas (9/)	
Point	Grandeur	référence	valeur de reference	Tolerance (%)	
<i>C1</i> (5.0,1.5,-1.0)	SIXX	'ANALYTIQUE'	$-0.3333N/m^2$	0.0001	
C2(5.0,1.5,1.0)	SIXX	'ANALYTIQUE'	$1.6667 N/m^2$	0.0001	

Titre: SSLX200 - Raccord 3D_POU: Traction simple et flex[...]

Date: 13/01/2015 Page: 6/7 Responsable : Jean-Luc FLÉJŌU Clé: V3.05.200 Révision: 12877

Fréquences propres

Mode	Type de référence	Valeur de référence	Tolérance (%)	
1	'ANALYTIQUE'	0.014449	2.5	
2	'ANALYTIQUE'	0.090529	18.0	

Date: 13/01/2015 Page: 7/7

Titre: SSLX200 - Raccord 3D_POU: Traction simple et flex[...]

Responsable : Jean-Luc FLÉJOU Clé : V3.05.200 Révision : 12877

4 Synthèse des résultats

Ce cas-test à permis de tester,en statique linéaire et en dynamique (recherche de fréquences propres), le raccord $\texttt{3D_POU}$ permettant de relier une modélisation volumique avec une modélisation poutre .