Date : 03/08/2011 Page : 1/10 Clé : V3.04.148 Révision : 6802

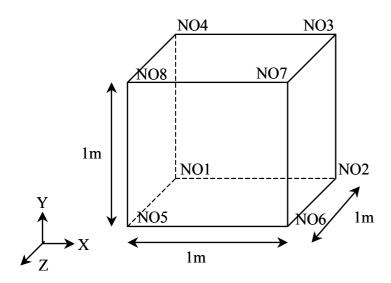
SSLV146 – Cube plein renforcé par des armatures sous chargement triaxial

Résumé

Ce test 3D entre dans le cadre de la validation de la formulation <code>GRILLE_MEMBRANE</code>. Il s'agit d'un cube plein de dimension unitaire. On place sur chaque face une nappe d'armatures d'acier de manière à balayer toutes les directions possibles. Le chargement consiste en des déplacements imposés sur tous les nœuds de la structure.

L'intérêt principal de ce test est de tester la modélisation GRILLE_MEMBRANE pour différentes orientations et pour différents éléments (linéaire et quadratique). Les résultats sont comparés à une solution analytique.

Les unités de toutes les valeurs numériques sont en SI.


Date: 03/08/2011 Page: 2/10

Titre : SSLV146 - Cube plein renforcé par des armatures so[...]

Responsable : Sylvie MICHEL-PONNELLE Clé : V3.04.148 Révision : 6802

1 Problème de référence

1.1 Géométrie

On définit six nappes d'armatures (une par côté du cube) :

- GEOX (2 nappes): faces NO1NO4NO8NO5 et NO2NO6NO7NO3
- GEOY (2 nappes): faces NO1NO2NO6NO5 et NO4NO3NO7NO8
- GEOZ (2 nappes): faces NO1NO2NO3NO4 et NO5NO6NO7NO8

1.2 Propriétés des matériaux

Pour le cube plein :

Modélisation	A	В	C	D
E(Pa)	2	2	2E14	2E14
ν	0	0	0	0

Pour les nappes d'armatures (toute modélisation confondue)

E=2E11Pa, v=0

- •Nappe GEOX : section par mètre linéaire $0.01\,m^2/ml$, excentrement 0, orientation (ANGL REP) $(30\,;0)$
- •Nappe GEOY : section par mètre linéaire $0.02\,m^2/ml$, excentrement 0, orientation (ANGL REP) $(0\,;40)$
- •Nappe GEOZ: section par mètre linéaire $0.03\,m^2/ml$, excentrement 0, orientation (ANGL_REP) (15~;70)

1.3 Conditions aux limites et chargements

Les conditions aux limites sont les suivantes :

DX = 0 sur la face NO2NO3NO7NO6

DY = 0 sur la face NO1NO2NO6NO5

DZ = 0 sur la face NO1NO2NO3NO4

Date : 03/08/2011 Page : 3/10 Clé : V3.04.148 Révision : 6802

Le chargement est appliqué en un incrément de la manière suivante (déplacements imposés) :

DX = 1 sur la face NO1NO4NO8NO5 DY = 2 sur la face NO4NO3NO7NO8DZ = 3 sur la face NO5NO6NO7NO8

2 Solution de référence

2.1 Solution formelle

On cherche à définir la déformation ε selon la direction principale d'une nappe d'armature située dans le plan $(x_1; y_1)$.

Compte tenu des conditions aux limites choisies, on peut écrire :

$$\varepsilon = u_{x1}\cos^2(\theta) + u_{v1}\sin^2(\theta)$$

avec (u_{xI}, u_{yI}) les composantes du vecteur déplacement dans le plan $(x_1; y_1)$ et θ l'angle entre la direction principale de la nappe d'armature et x_1 .

Pour définir la direction principale de la nappe, on utilise les angles nautiques $(\alpha; \beta)$ donnés par le mot clé <code>ANGL_REP</code>. Ils définissent un vecteur v dont la projection x_p sur le plan tangent de la nappe fixe la direction principale.

$$v = \cos(\alpha)\cos(\beta)x + \sin(\alpha)\cos(\beta)y + \sin(\beta)z$$

avec (x, y, z) le repère initial. Pour notre application, le vecteur déplacement U s'écrit :

$$v = 1.x + 2.y + 3.z$$

Pour la nappe GEOX (plan (y;z)):

$$x_n = \sin(30)y$$

La direction principale de la nappe est y ($\theta = 90^{\circ}$). La déformation s'écrit alors :

$$\varepsilon = u_v = 2$$

Pour la nappe GEOY (plan (x;z)):

$$x_p = \cos(40)x + \sin(40)z$$

La direction principale de la nappe fait donc un angle de $40\,^\circ$ avec le plan de la nappe. La déformation s'écrit alors :

$$\varepsilon = u_x \cos^2(40) + u_z \sin^2(40) = 1.82635$$

Pour la nappe GEOZ (plan (x, y)):

$$x_n = \cos(15) \cdot \cos(70)x + \sin(15)\cos(70)y$$

Révision: 6802

Date: 03/08/2011 Page: 4/10

Clé: V3.04.148

Titre : SSLV146 - Cube plein renforcé par des armatures so[...]
Responsable : Sylvie MICHEL-PONNELLE

La direction principale de la nappe fait donc un angle de $15\,^\circ$ avec le plan de la nappe. La déformation s 'écrit alors :

$$\varepsilon = u_x \cos^2(15) + u_y \sin^2(15) = 1.067$$

Ces trois valeurs seront les valeurs de référence analytiques pour la validation des calculs.

Date: 03/08/2011 Page: 5/10 Clé: V3.04.148 Révision: 6802

3 Modélisations

En fonction des modélisations, les objets sont maillés avec des éléments différents :

Modélisation A: cube : 1 élément HEXA8 à 8 nœuds

faces: 1 élément QUAD4 à 4 nœuds

Modélisation B: cube : 6 éléments TETRA4 à 4 nœuds

faces: 2 éléments TRIA3 à 3 nœuds

Modélisation C: même modélisation qu'en A avec des éléments quadratiques

Modélisation D: même modélisation qu'en B avec des éléments quadratiques

3.1 Grandeurs testées et résultats de la modélisation A

La modélisation A est constituée d'un élément CUB8 pour le cube et d'un élément QUA4 pour chaque face. Le comportement est élastique (commandes MECA_STATIQUE puis STAT_NON_LINE (vérification)).

On teste les valeurs données par EPSI_ELGA; EPSI_ELNO, SIEF_ELGA, SIEF_ELGA,

Pour MECA STATIQUE:

	EPSI_ELGA (dans la direction principale de la nappe d'armature)			SIEF_ELGA (dans la direction principale de la nappe d'armature)		
Points						
d'intégration	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA3 – Point 1 (nappe GEOY)	1.8264	1.8263	0	3.6527E11	3.6527E11	0
MA4 – Point 1 (nappe GEOY)	1.8264	1.8263	0	3.6527E11	3.6527E11	0
MA5 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA6 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0

	EP	SI_ELNO		SIGM_ELNO		
Noeud	1 '	n principale de la armature)	nappe	(dans la direction principale de la nappe d'armature)		
	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
NO1 (nappe GEOY)	1.8264	1.8263	0	3.6527E11	3.6527E11	0
NO1 (nappe GEOX)	2	2	0	4E11	4E11	0

Pour STAT_NON_LINE

Titre : SSLV146 - Cube plein renforcé par des armatures so[...]

Responsable : Sylvie MICHEL-PONNELLE

Date : 03/08/2011 Page : 6/10
Clé : V3.04.148 Révision : 6802

Points	EPSI_ELGA (dans la direction principale de la nappe d'armature)			SIEF_ELGA (dans la direction principale de la nappe d'armature)		
d'intégration	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA3 – Point 1 (nappe GEOY)	1.8264	1.8263	0.003	3.6527E11	3.6527E11	0
MA4 – Point 1 (nappe GEOY)	1.8264	1.8263	0.003	3.6527E11	3.6527E11	0
MA5 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA6 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0

	EPSI ELNO			SIEF ELNO			
	(dans la direction	n principale de la	nappe	(dans la direction principale de la nappe			
Noeud	d'armature)			•	d'armature)		
	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart	
MA1 - NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0	
MA2 - NO1 (nappe GEOY)	1.8264	1.8263	0.003	3.6527E11	3.6527E11	0	
MA3 - NO1 (nappe GEOX)	2	2	0	4E11	4E11	0	

La valeur de l'énergie potentielle totale est aussi testée à partir du calcul STAT_NON_LINE. La solution analytique est calculée à partir de toutes les déformations uniaxiales dans les grilles, à partir de l'équation :

$$E_{pot} = \frac{1}{2} \int_{element} \varepsilon.A.\varepsilon dv$$

où $\,A\,$ désigne le tenseur d'élasticité.

Les résultats obtenus sont les suivants :

	Code_Aster	Référence analytique	Ecart
Energie potentielle totale (J)	2.8173E10	2.8173E10	0

Titre: SSLV146 - Cube plein renforcé par des armatures so[...]

Date: 03/08/2011 Page: 7/10 Responsable: Sylvie MICHEL-PONNELLE Clé: V3.04.148 Révision: 6802

3.2 Grandeurs testées et résultats de la modélisation B

La modélisation B est constituée de six éléments TETRA4 pour le cube et de deux éléments TRIA3 pour chaque face.

Le comportement est élastique en utilisant la commande MECA STATIQUE puis la commande STAT NON LINE (vérification).

On teste les valeurs données par EPSI ELGA; EPSI ELNO, SIEF ELGA, SIEF ELNO; SIEF ELGA; SIGM ELNO en différents points dans les directions principales des nappes d'armature, obtenues respectivement avec les commandes MECA STATIQUE et STAT NON LINE.

Pour **MECA_STATIQUE**:

	ı					
Points d'intégration	EPSI_ELGA (dans la direction principale de la nappe d'armature)			SIEF_ELGA (dans la direction principale de la nappe d'armature)		
dintegration	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA3 – Point 1 (nappe GEOZ)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA4 – Point 1 (nappe GEOZ)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA5 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA6 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA11 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA21 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA31 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA41 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA51 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA61 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0

Noeud	EPSI_ELNO (dans la direction principale de la nappe d'armature)			SIGM_ELNO (dans la direction principale de la nappe d'armature)		
	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 - NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 - NO1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA3 - NO1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA11 - NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA21 - NO1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0

Manuel de validation

Version default

Code Aster

Titre : SSLV146 - Cube plein renforcé par des armatures so[...]

Responsable : Sylvie MICHEL-PONNELLE

Date : 03/08/2011 Page : 8/10

Clé : V3.04.148 Révision : 6802

MA31 - NO1	2	2	0	4 ⊑11	4E11	l
(nappe GEOX)			U	4E11	4511	l

Pour STAT_NON_LINE

Points	(dans la direction	SI_ELGA n principale de la armature)	nappe	SIEF_ELGA (dans la direction principale de la nappe d'armature)		
d'intégration	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA3 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA4 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA5 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA6 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA11 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA21 – Point 1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA31 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA41 – Point 1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA51 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA61 – Point 1 (nappe GEOX)	2	2	0	4E11	4E11	0

Noeud	EPSI_ELNO (dans la direction principale de la nappe d'armature)			SIEF_ELNO (dans la direction principale de la nappe d'armature)		
	Code_Aster	Référence	Ecart (%)	Code_Aster	Référence	Ecart
MA1 - NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA2 - NO1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA3 - NO1 (nappe GEOX)	2	2	0	4E11	4E11	0
MA11 - NO1 (nappe GEOZ)	1.067	1.067	0.001	2.13397E11	2.13397E11	0
MA21 - NO1 (nappe GEOY)	1.8263	1.8263	0	3.6527E11	3.6527E11	0
MA31 - NO1 (nappe GEOX)	2	2	0	4E11	4E11	0

Date : 03/08/2011 Page : 9/10 Clé : V3.04.148 Révision : 6802

4 Résultats de la modélisation C

La modélisation C est identique à la modélisation A en utilisant des éléments quadratiques (commande CREA MAILLAGE, option LINE QUAD).

On retrouve les mêmes résultats que pour la modélisation A (erreur par rapport à la solution de référence inférieure à $0.002\,\%$).

5 Résultats de la modélisation D

La modélisation D est identique à la modélisation B en utilisant des éléments quadratiques.

On retrouve les mêmes résultats que pour la modélisation D (erreur par rapport à la solution de référence inférieure à $0.002\,\%$).

Titre : SSLV146 - Cube plein renforcé par des armatures so[...]

Responsable : Sylvie MICHEL-PONNELLE

Date : 03/08/2011 Page : 10/10 Clé : V3.04.148 Révision : 6802

6 Synthèse des résultats et remarques générales

Les résultats obtenus pour ces modélisations sont identiques aux solutions de référence. Ils valident la modélisation GRILLE_MEMBRANE pour quatre types d'éléments différents dans le cas d'un calcul mécanique linéaire (MECA_STATIQUE et STAT_NON_LINE).