Date: 15/06/2011 Page: 1/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

Responsable : Josselin DELMAS

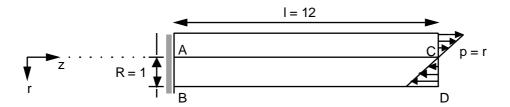
SSLV109 - Cylindre plein en pression non uniforme mode 1

Résumé:

Ce test valide tous les éléments de Fourier (triangles et quadrangles de degrés 1 et 2) en élasticité. Les fonctionnalités sont les suivantes :

- pression variable en espace,
- · déplacements imposés,
- matrices de rigidité Fourier mode 1,
- contraintes aux nœuds Fourier mode 1,
- recombinaison de Fourier sur les déplacements et contraintes (modélisation A),
- matériau isotrope transverse (modélisation F).

Le test a une solution analytique quadratique en déplacements.


L'intérêt du test réside dans :

- la comparaison entre solution calculée et solution analytique sur les différents éléments finis,
- la comparaison des résultats avec le Code PERMAS sur les éléments TRIA6 (modélisation A).

Date: 15/06/2011 Page: 2/16 Responsable: Josselin DELMAS Clé: V3.04.109 Révision: 6525

Problème de référence

1.1 Géométrie

Le domaine modélisé est ACDB (plan $\theta = 0$).

1.2 Propriétés de matériaux

$$E = 72 N/m^2$$

$$v = 0.3$$

Conditions aux limites et chargements 1.3

$$u_r(A) = u_z(A) = u_\theta(A) = 0$$

 $u_z(AB) = 0$

$$p = \bar{p} \, \frac{r}{R} \cos \theta$$

avec $\bar{p}=1$. et R=1 appliqué en z=12.

Conditions initiales 1.4

Sans objet pour l'analyse statique.

Date: 15/06/2011 Page: 3/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

Responsable: Josselin DELMAS

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

$$u_r(r,z,\theta) = u(r,z)\cos\theta$$
 avec $u(r,z) = \frac{M}{2EI}z^2 + \frac{v\bar{p}}{2ER}r^2$

$$u_z(r,z,\theta) = v(r,z)\cos\theta$$
 avec $v(r,z) = -\frac{\overline{p}}{2EI}rz$

$$u_{\boldsymbol{\theta}}(\boldsymbol{r},\boldsymbol{z},\boldsymbol{\theta})\!=\!w(\boldsymbol{r},\boldsymbol{z})(-\sin\theta) \qquad \text{avec} \ w(\boldsymbol{r},\boldsymbol{z})\!=\!\frac{M}{2\mathrm{EI}}\boldsymbol{z}^2\!-\!\frac{v\,\overline{p}}{2\mathrm{ER}}\boldsymbol{r}^2$$

Toutes les contraintes sont nulles sauf $\,\sigma_{\it zz}(r$, $z)\!=\!-{{\overline p}\over R}r$.

Les données ont été choisies de telle façon que u(x)=u(0,l)=1.

Les déplacements s'écrivent donc ici :

$$u(r,z) = \frac{z^2}{144} + \frac{r^2}{480}$$
; $v(r,z) = -\frac{rz}{72}$; $w(r,z) = \frac{z^2}{144} - \frac{r^2}{480}$

et:

$$\sigma_{zz}(r$$
 , $z) = -r$

2.2 Résultats de référence

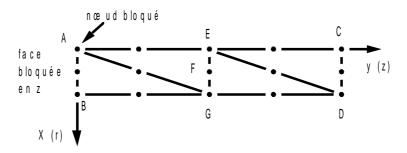
$$u$$
, v , w , σ_{zz} en $r=0., 0.5, 1.$ $z=0., 6., 12.$ $r=0.$ en $z=6.$ $\theta=45^{\circ}$

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

1) PERMAS-HS. Axisymmetric Continua with arbitrary loads. Stuttgart 1985. INTES publication n°224 pp 42 - 49.


Date: 15/06/2011 Page: 4/16 Responsable: Josselin DELMAS Clé: V3.04.109 Révision: 6525

Modélisation A 3

3.1 Caractéristiques de la modélisation

Numéro des noeuds :

$$A=N1$$
 $B=N3$ $C=N13$ $D=N15$ $E=N7$ $F=N8$ $G=N9$

Conditions limites:

Pression sur la face CD: PRES REP (GROUP MA: Bout PRES: p) p étant défini par AFFE CHAR MECA F par p(X) = -X

3.2 Caractéristiques du maillage

Nombre de nœuds : 15

Nombre de mailles et types : 4 TRIA6, 1SEG3 sur segment CD

Responsable : Josselin DELMAS

Date : 15/06/2011 Page : 5/16 Clé : V3.04.109 Révision : 6525

4 Résultats de la modélisation A

4.1 Valeurs testées

Nœud	Grandeur	Référence
В	и	2.0833 10 ⁻³
	v	0.
	w	-2.0833 10 ⁻³
	$\sigma_{\scriptscriptstyle zz}$	– 1.
E	и	0.25
	ν	0.
	w	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{F}	и	0.250521
	v	-0.04166
	w	0.0249479
	$\sigma_{\scriptscriptstyle zz}$	-0.5
\overline{G}	и	0.252083
	ν	-0.083333
	w	0.247917
	$\sigma_{\scriptscriptstyle zz}$	– 1.
\overline{C}	и	1.
	ν	0.
	w	1.
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{D}	и	1.00208
	ν	-0.16666
	W	0.99791
	$\sigma_{\scriptscriptstyle zz}$	–1 .

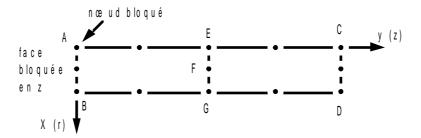
4.2 Remarques

La solution analytique est trouvée avec une précision $\,<\!0.02\,$ pour les déplacements et $\,<\!0.1\,$ pour les contraintes.

Avec une formule d'intégration numérique à 6 points de GAUSS (au lieu de 3) pour calculer la raideur, on trouverait la relation à 10^{-10} près (comme PERMAS).

Date: 15/06/2011 Page: 6/16

Titre : SSLV109 - Cylindre plein en pression non uniforme [...]


Responsable : Josselin DELMAS Clé : V3.04.109 Révision : 6525

5 Modélisation B

5.1 Caractéristiques de la modélisation

Numéro des nœuds :

$$A=N1$$
 $B=N3$ $C=N13$ $D=N15$ $E=N7$ $F=N8$ $G=N9$

Conditions limites:

Pression sur la face CD : PRES_REP (GROUP_MA : Bout PRES : p) $p \ \ \text{ \'etant d\'efini par AFFE_CHAR_MECA_F par } \ p(X) = -X$

5.2 Caractéristiques du maillage

Nombre de nœuds : 15

Nombre de mailles et types : 2 QUAD8, 1 SEG3 sur segment CD

Date: 15/06/2011 Page: 7/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

Responsable : Josselin DELMAS

Résultats de la modélisation B

6.1 Valeurs testées

6

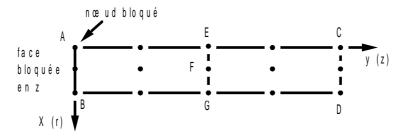
Nœud	Grandeur	Référence
В	и	2.0833 10 ⁻³
	ν	0.
	W	-2.0833 10 ⁻³
	$\sigma_{\scriptscriptstyle zz}$	–1 .
E	и	0.25
	v	0.
	w	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{F}	и	0.250521
	ν	-0.04166
	w	0.0249479
	$\sigma_{\scriptscriptstyle zz}$	-0.5
\overline{G}	и	0.252083
	ν	-0.08333
	w	0.247917
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{C}	и	1.
	ν	0.
	W	1.
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{D}	и	1.00208
	ν	-0.16666
	w	0.99791
	$\sigma_{\scriptscriptstyle zz}$	–1 .

6.2 Remarques

La solution analytique est trouvée avec 10 ou 11 chiffres significatifs.

Date: 15/06/2011 Page: 8/16

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]


Responsable : Josselin DELMAS Clé : V3.04.109 Révision : 6525

7 Modélisation C

7.1 Caractéristiques de la modélisation

Numéro des nœuds :

$$A=N1$$
 $B=N3$ $C=N13$ $D=N15$ $E=N7$ $F=N8$ $G=N9$

Conditions limites:

Pression sur la face CD : PRES_REP (GROUP_MA = Bout, PRES = p) $p \ \ \text{étant défini par } \text{AFFE_CHAR_MECA_F par} \ \ p(x) = -x$

7.2 Caractéristiques du maillage

Nombre de nœuds :15

Nombre de mailles et types : 2 QUAD9, 1 SEG3 sur segment CD

Date: 15/06/2011 Page: 9/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

Responsable : Josselin DELMAS

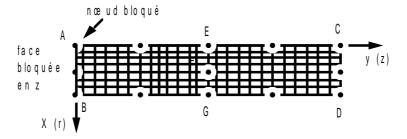
Résultats de la modélisation C

8.1 Valeurs testées

8

Nœud	Grandeur	Référence
В	и	2.0833 10 ⁻³
	ν	0.
	w	− 2.0833 10 ^{−3}
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{E}	и	0.25
	v	0.
	W	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{F}	и	0.250521
	ν	-0.04166
	w	0.0249479
	$\sigma_{\scriptscriptstyle zz}$	-0.5
\overline{G}	и	0.252083
	v	-0.08333
	W	0.247917
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{C}	и	1.
	ν	0.
	w	1.
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{D}	и	1.00208
	ν	-0.16666
	w	0.99791
	$\sigma_{\scriptscriptstyle zz}$	–1 .

8.2 Remarques


La solution analytique est trouvée avec 10 ou 11 chiffres significatifs.

Date: 15/06/2011 Page: 10/16 Responsable : Josselin DELMAS Clé: V3.04.109 Révision: 6525

Modélisation D 9

9.1 Caractéristiques de la modélisation

Numéro des nœuds : A = N1B = N1129C = N1369D = N2169E = N141F = N705G = N1269

Conditions limites:

Pression sur la face ${\it CD}$: PRES REP (GROUP MA : Bout PRES : p) p étant défini par AFFE CHAR MECA F par p(x)=-x

9.2 Caractéristiques du maillage

Nombre de nœuds : 2169

Nombre de mailles et types : 1920 QUAD4, 8 SEG2 sur segment CD

Date: 15/06/2011 Page: 11/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

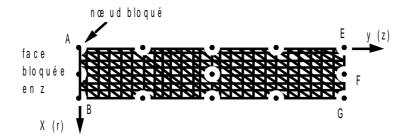
Responsable : Josselin DELMAS

10 Résultats de la modélisation D

10.1 Valeurs testées

Nœud	Grandeur	Référence
В	и	2.0833 10 ⁻³
	v	0.
	w	– 2.0833 10 ^{–3}
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{E}	и	0.25
	v	0.
	w	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{F}	и	0.250521
	v	-0.04166
	w	0.0249479
	$\sigma_{\scriptscriptstyle zz}$	-0.5
\overline{G}	и	0.252083
	v	-0.083333
	w	0.247917
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{C}	и	1.
	v	0.
	w	1.
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{D}	и	1.00208
	ν	-0.16666
	W	0.99791
	$\sigma_{\scriptscriptstyle zz}$	–1 .

10.2 Remarques


Pour obtenir une précision de l'ordre de 1 % sur les contraintes, il est nécessaire de modéliser la structure très finement (8 éléments radialement et 240 axialement).

Date: 15/06/2011 Page: 12/16 Responsable: Josselin DELMAS Clé: V3.04.109 Révision: 6525

Modélisation E 11

Caractéristiques de la modélisation

Numéro des nœuds : A = NIB = N2421E = N121F = N1331G = N2541

Conditions limites:

DDL_IMPO : (NOEUD : A DX = 0. DY = 0. DZ = 0.) (GROUP NO : AB DY = 0.)face AB

Pression sur la face EG: PRES REP (GROUP MA: Bout PRES: p) p étant défini par AFFE CHAR MECA F par p(x) = -x

11.2 Caractéristiques du maillage

Nombre de nœuds : 2541

Nombre de mailles et types : 4800 TRIA3, 20 SEG2 sur segment EG

11.3 Remarques

Pour diminuer le nombre de nœuds, on a modélisé la structure pour $y \le 6$. La précision sur les résultats est néanmoins moindre que pour les éléments QUAD4.

Date: 15/06/2011 Page: 13/16

Clé: V3.04.109

Titre: SSLV109 - Cylindre plein en pression non uniforme [...]

Responsable : Josselin DELMAS

12 Résultats de la modélisation E

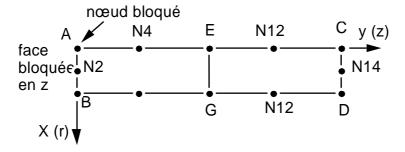
12.1 Valeurs testées

Nœud	Grandeur	Référence
В	и	2.0833 10 ⁻³
	ν	0.
	W	-2.0833 10 ⁻³
	$\sigma_{\scriptscriptstyle zz}$	–1 .
\overline{E}	и	0.25
	ν	0.
	W	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{F}	и	0.250521
	ν	-0.04166
	w	0.249479
	$\sigma_{\scriptscriptstyle zz}$	-0.5
\overline{G}	и	0.252083
	ν	-0.083333
	w	0.247917
	$\sigma_{\scriptscriptstyle zz}$	–1 .

12.2 Remarques

La précision sur les déplacements est inférieure à 3%, celle sur les contraintes inférieure à 2 %.

Sur cet exemple, les TRIA3 convergent nettement moins rapidement que les QUAD4 vers la solution exacte.


Date: 15/06/2011 Page: 14/16 Responsable: Josselin DELMAS Clé: V3.04.109 Révision: 6525

Modélisation F 13

Caractéristiques de la modélisation

Numéro des nœuds :

$$A = N1$$
 $B = N3$ $C = N13$ $D = N15$ $E = N7$ $G = N9$

Conditions limites:

Pression sur la face CD : PRES REP (GROUP MA : Bout PRES : p) p étant défini par AFFE CHAR MECA F par p(X) = -X

13.2 Caractéristiques du maillage

Nombre de nœuds : 15

Nombre de mailles et types : 2 QUAD8, 1SEG3 sur segment CD

Responsable : Josselin DELMAS

Date : 15/06/2011 Page : 15/16 Clé : V3.04.109 Révision : 6525

14 Résultats de la modélisation F

14.1 Valeurs testées

Nœud	Grandeur	Référence
N2	и	2.6041666
	w	-2.6041666
\overline{A}	$\sigma_{\scriptscriptstyle zz}$	0.
В	$\sigma_{\scriptscriptstyle zz}$	–1 .
N4	и	0.0625
	w	0.0625
E	и	0.25
	W	0.25
	$\sigma_{\scriptscriptstyle zz}$	0.
\overline{G}	\overline{v}	-0.083333
	$\sigma_{\scriptscriptstyle zz}$	–1 .
N10	и	0.5625
	W	0.5625
N12	ν	-0.125
C	и	1.
	W	1.
	$\sigma_{\scriptscriptstyle zz}$	0.
N14	ν	-0.083333
\overline{D}	v	-0.166666
	$\sigma_{\scriptscriptstyle zz}$	–1 .

Date: 15/06/2011 Page: 16/16 Responsable : Josselin DELMAS Clé: V3.04.109 Révision: 6525

Synthèse des résultats 15

Les éléments d'ordre 2 donnent la solution analytique.

Les éléments d'ordre 1 convergent lentement vers la solution et nécessitent des maillages très fins. Les temps calculs restent toutefois raisonnables.