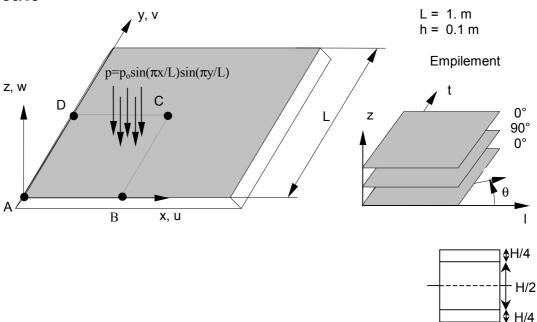
Date: 15/09/2011 Page: 1/6 Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

SSLS504 - Plaque carrée composite constituée de 3 couches, soumise à un chargement doublement sinusoïdale

Résumé:


Ce test représente le calcul quasi-statique d'une plaque carrée composite constituée de 3 couches, simplement supportée, soumise à un chargement doublement sinusoïdal. Ce cas-test permet de valider la modélisation éléments finis DST avec les mailles TRIA3 et QUAD4, avec un matériau composite multi-couches.

Les déplacements et les contraintes obtenus sont comparés à une solution de référence numérique.

Date: 15/09/2011 Page: 2/6 Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

Problème de référence

1.1 Géométrie

Les 3 couches ont pour épaisseur relative : H/4, H/2, H/4

1.2 Propriétés du matériau

Les axes d'orthotropie correspondent aux directions curvilignes x et y .

$$E_l = 25.$$
 $E_t = 1.$ $(l \Leftrightarrow x ; t \Leftrightarrow y)$ $G_{lt} = G_{lz} = 0.5$ $G_{tz} = 0.2$

Conditions aux limites et chargements 1.3

- Conditions aux limites : le déplacement perpendiculaire à la plaque, sur son contour est nul.
- Chargement: $p = p_o \sin(\pi x/L) \sin(\pi y/L)$ avec $p_o = 0.01$

Conditions initiales 1.4

Sans objet

Date: 15/09/2011 Page: 3/6 Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

Solution de référence

Méthode de calcul utilisée pour la solution de référence 2.1

La solution de référence est une solution numérique [3].

2.2 Résultats de référence

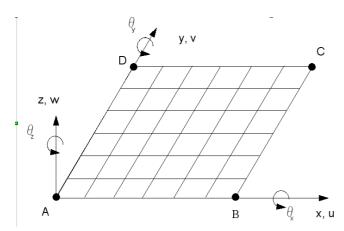
Les résultats de référence numériques sont les suivants :

	Grandeur	DST*	DST*
	Grandeur	(TRIA3)	(QUAD4)
•	Déplacement w au point C $(L/2, L/2, 0)$	-0.07323	-0.07417
•	Contrainte σ_{xx} au point C $(L/2, L/2, h/2)$ (couche 3)	-0.478	-0.482
•	Contrainte σ_{yy} au point C $(L/2, L/2, h/4)$ (couche 2)	-0.339	-0.4
•	Contrainte $ au_{xz}$ au point D $(0,L/2,0)$ (couche 2)	-0.0203	-0.0305
•	Contrainte $ au_{yz}$ au point B $(L/2,0,0)$ (couche 2)	-0.0406	-0.0204

^{*} les solutions de référence ont été obtenues avec un maillage 6×6 [3].

2.3 Incertitudes sur la solution

Inférieure à 2%


2.4 Références bibliographiques

- 1) BATOZ J.L., DHATT G.: Modélisation des structures par éléments finis, Vol 2, Poutres et Plaques, HERMES.
- 2) PAGANO N.J., Hatfield J.J.: "Elastic behaviour of multilayered bidirectional composites", AIAA J., Vol 10, N°7, p. 931-933, 1972..
- 3) LARDEUR P. : Développement et évaluation de deux nouveaux éléments finis de plaques et de coques composites avec influence du cisaillement transversal, Thèse de Doctorat Ingénieur, Université de Technologie de Compiègne, 1990.

Date: 15/09/2011 Page: 4/6 Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

Modélisation A 3

3.1 Caractéristiques de la modélisation

Modélisation DST (QUAD4)

Conditions aux limites :

Côté AB : $w = \theta_v = 0$ Côté AD : $w = \theta_x = 0$

Conditions de symétrie :

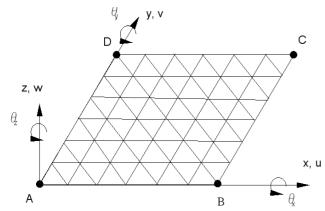
Côté BC : $u=\theta_v=0$

 $CD : v = \theta_r = 0$ Côté

3.2 Caractéristiques du maillage

Nombre de nœuds : 49

Nombre de mailles et type : 36 QUAD4


3.3 Grandeurs testées et résultats

Identific	ation	Type de Référence	Valeur de Référence	Tolérance
Déplacement w au point	$C \qquad (L/2, L/2, 0)$	'SOURCE_EXTERNE'	-0.07417	0.4%
Contrainte σ_{xx} $(L/2, L/2, h/2)$	au point <i>C</i>	'SOURCE_EXTERNE'	-0.482	2%
Contrainte σ_{yy} ($L/2, L/2, h/4$)	au point C	'SOURCE_EXTERNE'	-0.400	4%
Contrainte τ_{xz} au point	D = (0, L/2, 0)	'SOURCE_EXTERNE'	-0.0305	2%
Contrainte τ_{vz} au point	B = (L/2,0,0)	'SOURCE_EXTERNE'	-0.0204	3%

Date: 15/09/2011 Page: 5/6 Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

Modélisation B 4

4.1 Caractéristiques de la modélisation

Modélisation DST (TRIA3)

Conditions aux limites :

Côté AB : $w = \theta_v = 0$ Côté AD : $w = \theta_x = 0$

Conditions de symétrie :

Côté BC : $u=\theta_v=0$

 $_{\rm X,\ U}$ Côté CD : $v = \theta_{\rm x} = 0$

4.2 Caractéristiques du maillage

Nombre de nœuds : 49

Nombre de mailles et type : 72 TRIA3

Grandeurs testées et résultats 4.3

Identification	Type de Référence Valeur de Référence
Déplacement w au point C $(L/2, L/2)$	2,0) 'SOURCE_EXTERNE' -0.07323 3%
Contrainte σ_{xx} au point C $(L/2, L/2,$	$h/2$) 'SOURCE_EXTERNE' -0.478 4%
Contrainte σ_{yy} au point C $(L/2, L/2,$	$h/4)$ 'SOURCE_EXTERNE' -0.339 6.5%
Contrainte τ_{xz} au point D $(0,L/2,0)$	'SOURCE_EXTERNE' -0.0203 12%
Contrainte τ_{vz} au point B $(L/2,0,0)$	'SOURCE_EXTERNE' -0.0406 12%

Version default

Titre : SSLS504 - Plaque carrée composite constituée de 3 [...] Date: 15/09/2011 Page: 6/6

Responsable: Thomas DE SOZA Clé: V3.03.504 Révision: 7161

Synthèse des résultats 5

- Déplacements : le résultat obtenu avec les mailles QUAD4 est satisfaisant (écart de 0.4%). On observe un écart plus important (3%) pour les mailles TRIA3.
- Contraintes: le résultat obtenu avec les mailles QUAD4 est satisfaisant (écart maximum de 3%). On observe un écart plus important (7%) pour les mailles TRIA3.

Ce test permet donc de valider le calcul des plaques composites sous chargement fonction de la géométrie, aussi bien en terme de déplacements que de contraintes.