Révision: 12266

Date: 11/04/2014 Page: 1/7

Clé: V3.03.139

Titre: SSLS139 – Flexion d'une plaque avec représentation[...]

Responsable: Sylvie MICHEL-PONNELLE

SSLS139 – Flexion d'une plaque avec

représentation simplifiée des armatures

Résumé:

L'objectif de ce test est de valider la représentation de nappes d'armature par un modèle de grille ou de membrane homogénéisée dans une structure en béton armé. On considère donc un problème classique de flexion de plaque, et on compare la solution obtenue à une solution tridimensionnelle de référence.

Titre: SSLS139 – Flexion d'une plaque avec représentation[...]

Date: 11/04/2014 Page: 2/7 Responsable: Sylvie MICHEL-PONNELLE Clé: V3.03.139 Révision: 12266

Problème de référence

1.1 Géométrie

On considère une plaque en béton armé, comportant des nappes d'armature sur les faces inférieure et supérieure. Cette plaque est encastrée à une extrémité, et soumise à un moment à l'autre extrémité.

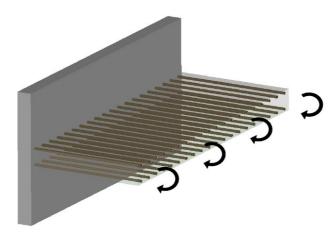


Figure 1: Problème classique de flexion d'une plaque en béton armé.

Pour limiter le coût de calcul, on ne modélise qu'un tronçon de plaque, aux bords desquels on impose des conditions de périodicité. Les dimensions de la plaque et des armatures sont indiquées sur la Figure 2.

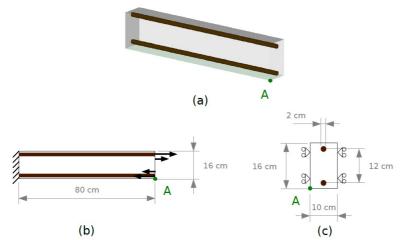


Figure 2: Dimensions du tronçon de plaque modélisé. (a) Vue générale ; (b) vue longitudinale ; (c) coupe du tronçon modélisé.

On représente les nappes d'armature par un modèle de grille ou de membrane équivalente, qui permet de beaucoup limiter le coût de calcul (voir Figure 3). Les points POINT 1 et POINT 2 sont utilisés pour le post-traitement des résultats.

Date: 11/04/2014 Page: 3/7

Titre: SSLS139 – Flexion d'une plaque avec représentation[...]

Responsable : Sylvie MICHEL-PONNELLE Clé : V3.03.139 Révision : 12266

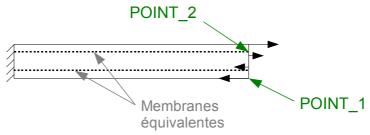


Figure 3: Représentation des nappes d'armature par un modèle de grille ou de membrane équivalente

1.2 Propriétés des matériaux

Le béton a un comportement élastique homogène isotrope, caractérisé par le module d'Young et le coefficient de Poisson indiqués ci-dessous :

$$E_B=30 \text{ GPa}$$

 $v_B=0.22$

L'acier présente également un comportement élastique homogène isotrope, caractérisé par les coefficients :

$$\begin{cases} E_A = 200 \text{ GPa} \\ v_A = 0.3 \end{cases}$$

1.3 Conditions aux limites et chargements

Les conditions aux limites appliquées sur la plaque sont indiquées ci-dessous, correspondant respectivement aux conditions d'encastrement, aux conditions de périodicité et au moment exercé en bout de plaque :

$$u=0 \text{ sur ENCAST}$$

$$u_Y=0 \text{ sur BORDS}$$

$$F_X=937500 \frac{Z-0.08}{0.08} \text{ sur BOUT}$$

Date: 11/04/2014 Page: 4/7

Titre: SSLS139 – Flexion d'une plaque avec représentation[...]

Responsable : Sylvie MICHEL-PONNELLE Clé : V3.03.139 Révision : 12266

2 Solution de référence

2.1 Méthode de calcul

Ce problème n'admet pas de solution analytique exacte. La solution de référence est donc obtenue par une modélisation tridimensionnelle fine, détaillée dans la référence 4.

2.2 Grandeurs et résultats de référence

On précise ci-dessous le déplacement vertical mesuré en bout de plaque dans la modélisation de référence.

Grandeur	Composante	Solution de référence	
DEPL - POINT_1	DZ	-87.1E-6	

2.3 Références bibliographiques

[1] DAVID M., Approche multi-échelle du comportement mécanique des structures en béton armé – Application aux enceintes de confinement des centrales nucléaires. Thèse de doctorat

Date: 11/04/2014 Page: 5/7

Titre: SSLS139 – Flexion d'une plaque avec représentation[...]

Responsable : Sylvie MICHEL-PONNELLE Clé : V3.03.139 Révision : 12266

3 Modélisation A

3.1 Caractéristiques de la modélisation

On représente les nappes d'armature sur les faces inférieure et supérieure par un modèle de membrane équivalente. Les coefficients de rigidité de cette membrane sont calculés par une méthode d'homogénéisation détaillée dans la référence 4. La valeur de ces coefficients est précisée dans le tableau ci-dessous :

Paramètre	Valeur (Pa.m)
$M_{\it LLLL}$	5.46223E8
M_{LLTT}	3.90776E7
M_{TTTT}	1.23452E8
$M_{\it LTLT}$	5.73664E7

Ces coefficients sont exprimés dans le repère global (angles nautiques de rotation du repère nuls).

3.2 Caractéristiques du maillage

Le maillage contient 12 712 nœuds, 8 018 tétraèdres quadratiques (TETRA10) et 500 triangles quadratiques (TRIA6) pour représenter les nappes d'armature.

3.3 Grandeurs testées et résultats

On teste le déplacement vertical en bout de plaque, ainsi que la déformation et la contrainte dans la membrane en bout de plaque.

Identification	Composante	Type de référence	Valeur de référence	Tolérance
DEPL - POINT_1	DZ	'AUTRE_ASTER'	-87.1E-6	0.3%

Identification	Composante	Type de référence	Tolérance
DEPL - POINT_1	DZ	'NON_REGRESSION'	1.E-6
EPSI_NOEU - POINT_2	EXX	'NON_REGRESSION'	1.E-6
SIEF_NOEU - POINT_2	NXX	'NON_REGRESSION'	1.E-6

Titre: SSLS139 - Flexion d'une plaque avec représentation[...]

Date: 11/04/2014 Page: 6/7 Responsable: Sylvie MICHEL-PONNELLE Clé: V3.03.139 Révision: 12266

Modélisation B 4

4.1 Caractéristiques de la modélisation

On représente les nappes d'armature sur les faces inférieure et supérieure par un modèle de grille.

4.2 Caractéristiques du maillage

Le maillage est le même que celui de la modélisation A.

4.3 Grandeurs testées et résultats

On teste le déplacement vertical en bout de plaque, ainsi que la déformation et la contrainte dans la grille en bout de plaque.

Identification	Composante	Type de référence	Valeur de référence	Tolérance
DEPL - POINT_1	DZ	'AUTRE_ASTER'	-87.1E-6	4%

Identification	Composante	Type de référence	Tolérance
DEPL - POINT_1	DZ	'NON_REGRESSION'	1.E-6
EPSI_NOEU - POINT_2	EXX	'NON_REGRESSION'	1.E-6
SIEF_NOEU - POINT_2	SIXX	'NON_REGRESSION'	1.E-6

Date: 11/04/2014 Page: 7/7

Titre: SSLS139 - Flexion d'une plaque avec représentation[...]

Responsable : Sylvie MICHEL-PONNELLE Clé : V3.03.139 Révision : 12266

5 Synthèse des résultats

Ce test valide le principe de la représentation des nappes d'armature par un modèle de grille ou de membrane homogénéisée. Cette validation repose sur une comparaison avec un modèle tri-dimensionnel de référence, complétée par plusieurs tests de non-régression.

Le modèle de membrane homogénéisée donne d'excellents résultats en régime élastique, mais il demande l'identification préalable des coefficients de rigidité de la membrane via des calculs élémentaires d'homogénéisation. Ceci rend son utilisation délicate dans un contexte industriel.

Le modèle de grille donne des résultats acceptables bien qu'un peu moins précis. Il est en revanche beaucoup plus simple à utiliser.