Révision: 8072

Date: 14/12/2011 Page: 1/7

Clé: V3.03.007

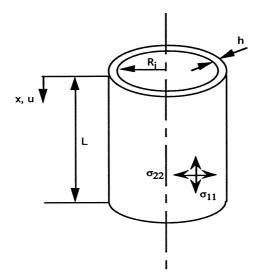
Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]

Responsable : Thomas DE SOZA

SSLS07 - Cylindre mince sous charge axiale uniforme

Résumé:

Ce test issu du guide VPCS (SSLS 07/89) a pour but de valider un chargement linéique (FORCE_POUTRE) en modélisation axisymétrique.


On utilisera pour cela les 2 commandes : AFFE_CHAR_MECA (modélisation A) et AFFE_CHAR_MECA_F (modélisation B).

Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]

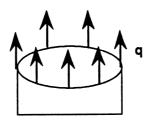
Date: 14/12/2011 Page: 2/7 Responsable: Thomas DE SOZA Clé: V3.03.007 Révision: 8072

Problème de référence

1.1 Géométrie

Rayon moyen : $R_o = 1$ m Épaisseur $h = 0.02 \, m$ Hauteur L=4 mRayon interne : $R_i = R_o - h/2$

1.2 Propriétés de matériaux


Module de Young $E = 2.1 \times 10^{11} Pa$

Coefficient de Poisson : v = 0.3

1.3 Conditions aux limites et chargements

Déplacement axial nul à l'extrémité basse ($u\!=\!0$) + conditions de symétrie

Charge axiale uniforme par unité de longueur $q = 10000 \, N/m$, appliquée à l'extrémité haute

Conditions initiales 1.4

Sans objet pour l'analyse statique.

Date: 14/12/2011 Page: 3/7

Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]

Responsable : Thomas DE SOZA Clé : V3.03.007 Révision : 8072

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Contrainte axiale : $\sigma_{11} = \frac{q}{h}$

Contrainte circonférentielle : $\sigma_{\rm 22} = 0$

Allongement du cylindre : $U_x = \frac{qL}{Eh}$

 $\ \, \text{D\'eplacement radial}: \ \, \boldsymbol{U_r} \! = \! -\frac{q \, \nu \, R_0}{Eh}$

2.2 Résultats de référence

$$\sigma_{11} = 5 \times 10^5 Pa$$
 $U_x = 9.52 \times 10^{-6} m$
 $U_r = -7.14 \times 10^{-7} m$

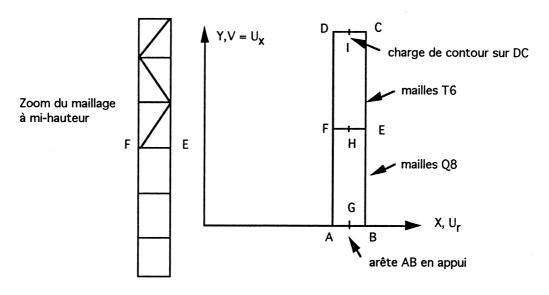
2.3 Incertitude sur la solution

Solution analytique.

2.4 Référence bibliographique

- 1) Guide VPCS Edition 1990 (SSLS 07/89)
- 2) R.J. ROARK et W.C. YOUNG: Formulas for stress and strain, 5^{ème} édition, New York, Mc Graw-Hill, 1975

Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]


Responsable: Thomas DE SOZA

Date: 14/12/2011 Page: 4/7 Clé: V3.03.007 Révision: 8072

3 Modélisation A

3.1 Caractéristiques de la modélisation

AXIS, mailles T6 et Q8

Position des points :

E , F à mi-hauteur

G , H , I à distance R_o de l'axe

100 éléments suivant la hauteur Découpage :

1 élément dans l'épaisseur

Conditions limites: DY = 0

sur AB

Chargement:

Force répartie = 500 000 sur CD

Nom des nœuds:

Point A = NIPoint C = N452Point G = N51Point E = N201Point I = N503

Point B = N101Point D = N504Point F = N203Point H = N202

3.2 Caractéristiques du maillage

Nombre de nœuds : 553

Nombre de mailles et types : 50 QUAD8, 100 TRIA6, 204 SEG3

3.3 Valeurs testées

Localisation	Type de valeur	Référence
Points G, H, I	$u_r(m)$	− 7.14 10 ^{−7}
Points C , D , I	$u_x(m)$	9.52 10 ⁻⁶

Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]

Date: 14/12/2011 Page: 5/7

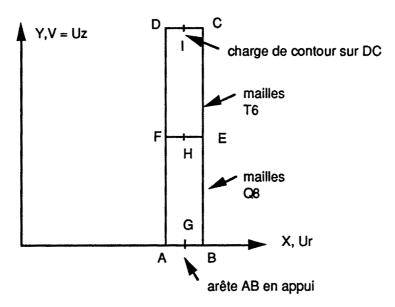
Responsable: Thomas DE SOZA

Clé: V3.03.007 Révision: 8072

Points A , B , C , D , E , F , G	$\sigma_{22}(Pa)$	0.
Points <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> , <i>G</i>	$\sigma_{11}(Pa)$	5. 10 ⁻⁵

3.4 Remarque

La valeur Fy fournie correspond à la pression p=q/h.


Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...]

Date: 14/12/2011 Page: 6/7 Clé: V3.03.007 Responsable: Thomas DE SOZA Révision: 8072

Modélisation B

4.1 Caractéristiques de la modélisation

AXIS. mailles T6 et Q8

Position des points :

E , F à mi-hauteur

G, H, I à distance R_o de l'axe

Découpage : 100 éléments suivant la hauteur

1 élément dans l'épaisseur

La charge est décomposée de la façon suivante :

- charge qI variant linéairement de 0 en D à $10000 \, N/m$ en C : champ de déplacements
- charge q2 variant linéairement de $10000 \, N/m$ en D à 0 en C : champ de déplacements

Les résultats sont donnés séparément pour chacun des champs U1 et U2.

Nom des nœuds :

Point A = NIPoint C = N452Point E = N201Point G = N51Point I = N503

Point H = N202Point B = N101Point D = N504Point F = N203

4.2 Caractéristiques du maillage

Nombre de nœuds : 557

Nombre de mailles et types : 50 QUAD8, 100 TRIA6, 204 SEG3

4.3 Valeurs testées

Champs	Localisation	Type de valeur	Référence
U1	Point $G(N51)$	$u_r(m)$	− 3,583. 10 ^{−7}
	Point $H(N202)$	•	$-3,583. 10^{-7}$

Titre : SSLS07 - Cylindre mince sous charge axiale uniform[...]

Date : 14/12/2011 Page : 7/7

Responsable : Thomas DE SOZA

Clé : V3.03.007 Révision : 8072

	Point $I(N503)$		−1,012. 10 ^{−6}
	Point $C(N452)$	$u_x(m)$	4,896. 10 ⁻⁶
	Point $D(N504)$		4,658. 10 ⁻⁶
	Point $I(N503)$		4,777. 10 ⁻⁶
U2	Point G	$u_r(m)$	− 3,559. 10 ^{−7}
	Point H		$-3,559. 10^{-7}$
	Point I		2,973. 10 ⁻⁷
	Point $C(N452)$		4,627. 10 ⁻⁶
	Point $D(N504)$		4,865. 10 ⁻⁶
	Point $I(N503)$		4,746. 10 ⁻⁶

5 Synthèse des résultats

Le mot-clé FORCE_CONTOUR utilisé à partir des deux commandes AFFE_CHAR_MECA et AFFE_CHAR_MECA_F fournit des résultats justes.