Révision: 6802

Date: 03/08/2011 Page: 1/9

Clé: V3.02.313

Titre : SSLP313 - Fissure inclinée dans une plaque illimit[...]

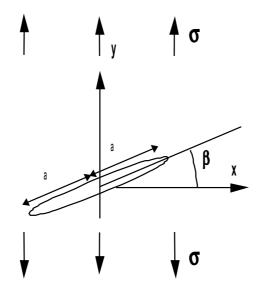
Responsable : Van Xuan TRAN

SSLP313 - Fissure inclinée dans une plaque illimitée, soumise à une traction uniforme à l'infini

Résumé:

Ce test est issu de la validation indépendante de la version 3 de Code_Aster en mécanique de la rupture.

On calcule K_I , K_{II} et le taux de restitution d'énergie pour une fissure droite, inclinée d'un angle b, dans une plaque de grandes dimensions soumise à une traction uniforme. Le modèle est bidimensionnel en contraintes planes. Le matériau est élastique linéaire isotrope. Ce test de référence en 2D permet de vérifier la séparabilité de K_I et K_{II} dans un mode mixte.


La solution de référence, donnée pour un domaine théoriquement illimité, est analytique.

En plus de la méthode énergétique (CALC_G), on teste la méthode de calcul des facteurs d'intensité des contraintes par extrapolation des déplacements (POST_K1_K2_K3). La modélisation B permet de tester cette dernière méthode avec un type de maillage préconisé (nœuds milieux au quart) pour obtenir une solution précise.

Date: 03/08/2011 Page: 2/9 Clé: V3.02.313 Responsable: Van Xuan TRAN Révision: 6802

Problème de référence

Géométrie 1.1

On attribue une valeur quelconque à l'inclinaison, $\beta = 37 degrés$. On choisit a=1.E-3m.

1.2 Propriétés du matériau

Le matériau est élastique linéaire isotrope, de module d'Young E=2.E11 Pa et de coefficient de Poisson $\nu = 0.3$.

La courbe de traction est définie telle que :

- la pente soit égale à 3.
- la limite d'élasticité soit égale à 1.88 GPa.

L'hypothèse des contraintes planes est appliquée.

1.3 Conditions aux limites et chargements

·Limites arbitraires du domaine maillé :

$$-x_{max} \le x \le x_{max}$$
 avec $x_{max} = 10a$
 $-y_{max} \le y \le y_{max}$ avec $y_{max} = 20a$

Conditions aux limites :

De façon à bloquer exclusivement les 3 modes rigides plans. UX = UY = 0 au coin inférieur gauche du modèle complet.

UY = 0 au coin inférieur droit du modèle complet.

Sur le bord inférieur, nous imposons UY=0

•Chargement: tension uniforme $\,\sigma_{_{_{\mathcal{V}}}}\!\!=\!\sigma_{_{\!0}}\,$ sur le bord supérieur :

La valeur de σ_0 vaut $100 \mathrm{MPa}$, en contraintes planes.

Version default

Date: 03/08/2011 Page: 3/9

Titre : SSLP313 - Fissure inclinée dans une plaque illimit[...]

Responsable : Van Xuan TRAN Clé : V3.02.313 Révision : 6802

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

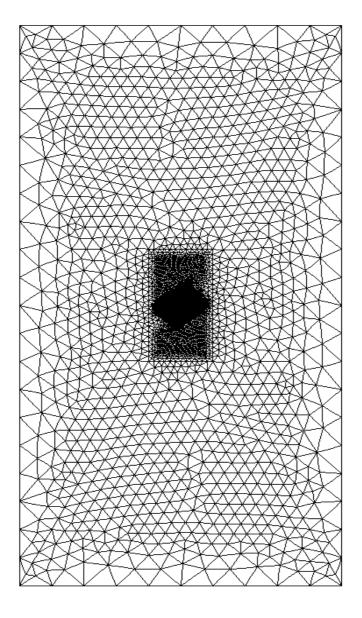
Fonction de contrainte d'Airy.

2.2 Résultats de référence

$$\begin{split} &K_{I} \!\!=\! \sigma_{0} \sqrt{(\pi_{0})} \!\cos^{2}\!\beta \\ &K_{II} \!\!=\! \sigma_{0} \sqrt{(\pi_{0})} \!\sin\!\beta \cos\beta \\ &G_{ref} \!\!=\! \frac{1}{E} \! \left(K_{I}^{2} \!\!+\! K_{II}^{2} \right) \text{ (en contraintes planes)} \end{split}$$

2.3 Incertitude sur la solution

Solution analytique exacte (Irwin) en milieu illimité.


2.4 Références bibliographiques

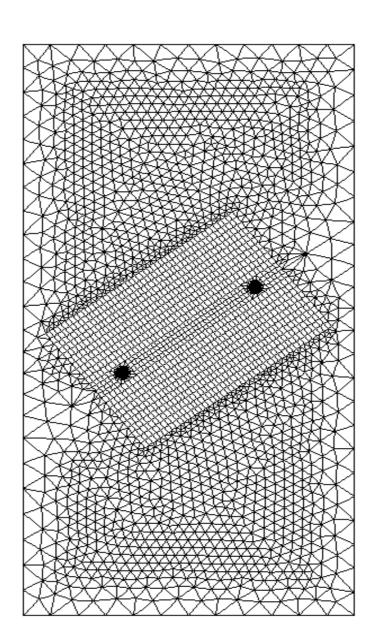
Y. MURAKAMI Stress intensity factors handbook, case 4.2, page 188. The Society of Materials Science, Japan, Pergamon Press, 1987.

Date: 03/08/2011 Page: 4/9 Responsable: Van Xuan TRAN Clé: V3.02.313 Révision: 6802

Modélisation A 3

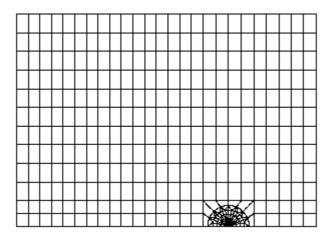
3.1 Caractéristiques de la modélisation

Modèle complet

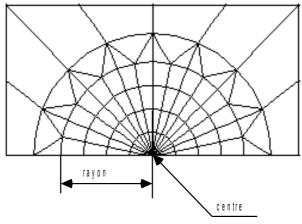

Révision: 6802

Date: 03/08/2011 Page: 5/9

Clé: V3.02.313


Titre : SSLP313 - Fissure inclinée dans une plaque illimit[...]

Responsable : Van Xuan TRAN



Après symétrisation et orientation

Date: 03/08/2011 Page: 6/9 Responsable: Van Xuan TRAN Clé: V3.02.313 Révision: 6802

Bloc initial 2D

Le rayon vaut 7.5E-5m

3.2 Caractéristiques du maillage

Le maillage est constitué de 14888 nœuds et 6674 éléments, dont 1392 éléments QUAD8 et 5282 éléments TRIA6.

Date: 03/08/2011 Page: 7/9 Responsable: Van Xuan TRAN Clé: V3.02.313 Révision: 6802

3.3 Grandeurs testées et résultats

3.3.1 Résultats obtenus avec CALC G

	Identification	Référence (analytique)	% tolérance
G		1,0019 10 ²	2,0
ΚŢ		3,5750 10 ⁶	1,0
Ктт		2,6939 10 ⁶	1,0

Tableau 3.3.1-1

3.3.2 Résultats obtenus avec POST K1 K2 K3

Identification	Référence (analytique)	% tolérance
G	1,0019 10²	4,0
KI	3,5750 10 ⁶	1,2
KII	2,6939 10 ⁶	3,0

Tableau 3.3.2-1

Les valeurs obtenues avec POST K1 K2 K3 sont également testées en non-régression :

Identification	Référence (non-régression)	% tolérance
G	96.85	0,1
Κ _Ι	3,5379307159775 10 ⁶	0,1
KII	2,6179089643527 10 ⁶	0,1

Tableau 3.3.2-2

On teste également la possibilité de donner à POST K1 K2 K3 directement les tables des sauts de déplacement, en faisant un test de par rapport aux valeurs précédemment obtenues

Identification	Référence (autre aster)	% tolérance
G	96.85	0,1
Κ _Ι	3,5379307159775 10 ⁶	0,1
KII	2,6179089643527 10 ⁶	0,1

Tableau 3.3.2-3

Date: 03/08/2011 Page: 8/9 Responsable: Van Xuan TRAN Clé: V3.02.313 Révision: 6802

Modélisation B 4

4.1 Caractéristiques de la modélisation

Même forme de maillage que précédemment, mais modification des coordonnées des nœuds milieux des arêtes touchant le fond de fissure, pour les déplacer au quart de ces arêtes (méthode de Barsoum).

Cette modification des coordonnées des nœuds est réalisée par une procédure GIBI accessible dans le ficher de données de maillage (SSLP313B.datg).

4.2 Caractéristiques du maillage

Le maillage est constitué de 14888 nœuds et 6674 éléments, dont 1392 éléments QUAD8 et 5282 éléments TRIA6.

4.3 Grandeurs testées et résultats

4.3.1 Résultats obtenus avec CALC G

	Identification	Référence (analytique)	% tolérance
G		1,0019 10 ²	2,0
KI		3,5750 10 ⁶	1,0
KII		2,6939 10 ⁶	1,0

Tableau 4.3.1-1

4.3.2 Résultats obtenus avec POST K1 K2 K3

Identification	Référence (analytique)	% tolérance
G	1,0019 10²	4,0
KI	3,5750 10 ⁶	1,2
K _{II}	2,6939 10 ⁶	3,0

Tableau 4.3.2-1

Date: 03/08/2011 Page: 9/9 Responsable: Van Xuan TRAN Clé: V3.02.313 Révision: 6802

Synthèse des résultats 5

Avec ce choix des limites du domaine de calcul, nous obtenons des écarts de l'ordre de 1% sur les coefficients K_I et K_{II} , et sur le taux de restitution d'énergie G.

En ce qui concerne la méthode POST K1 K2 K3, les résultats sont plus éloignés de la référence avec un maillage standard (de -1% à -30% d'écart), par contre, avec un maillage de type Barsoum (nœuds milieux au quart des côtés), préconisé pour ce type de méthode, les écarts sont compris entre -3% et +1.2%, ce qui est relativement précis.