Titre : SSLP300 – Plaque rectangulaire en porte-à-faux en[...]

Responsable : Thomas DE SOZA

Date : 10/07/2015 Page : 1/5 Clé : V3.02.300 Révision : 13405

SSLP300 – Plaque rectangulaire en porte-à-faux en flexion-cisaillement dans son plan

Résumé:

L'objectif de ce cas-test est de valider la flexion d'une plaque dans un plan, sous l'effet d'un effort tranchant. Il s'agit d'un problème 2D en contraintes planes.

Titre: SSLP300 – Plaque rectangulaire en porte-à-faux en[...]

Date: 10/07/2015 Page: 2/5 Responsable: Thomas DE SOZA Clé: V3.02.300 Révision: 13405

Problème de référence

1.1 Géométrie

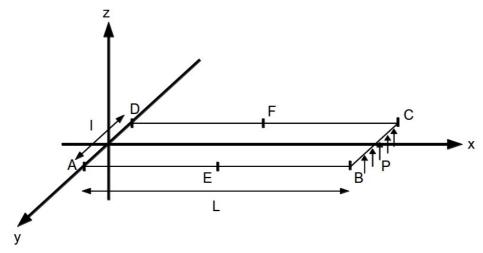


Figure 1.1 Géométrie du problème et système de chargement

Point E : milieu de ABPoint F : milieu de DCLongueur: L=1 mLargeur: l=0.1 mEpaisseur: h = 0.005 m

Moment d'inertie de section : $I_z = \frac{hl^3}{12} = 4.167 \times 10^{-7} m^4$

Propriétés du matériau 1.2

Module d'Young	$E=2.1\times10^{11} Pa$
Coefficient de Poisson	ν =0.3

Conditions aux limites et chargements 1.3

Déplacement imposé :

Encastrement du côté AD	DX=0 , $DY=0$

Chargement imposé:

Force de résultante	P	suivant	у	sur le	P = 315 N	soit	une	force	surfacique
côté BC					$f_y = 630000$				

Date: 10/07/2015 Page: 3/5

Titre: SSLP300 – Plaque rectangulaire en porte-à-faux en[...]

Responsable : Thomas DE SOZA Clé : V3.02.300 Révision : 13405

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Le champ de déplacement suivant l'axe $\ y$ à l'extrémité de la plaque (segment $\ BC$) est donné dans l'hypothèse de la théorie des poutres par :

$$u_y^{BC} = \frac{PL^3}{3\text{EI}_z}(1 + 0.98\frac{l^2}{L^2}) \quad \text{(solution avec prise en compte de l'effort tranchant dans une poutre de Timoshenko)}$$

d'où
$$u_v^{BC} = 0.00121 \, m$$

Le champ de contrainte normale O_{xx} due à la flexion est donné par :

soit
$$\sigma_{xx} = 37.8 \times 10^6 (L-x)$$

2.2 Résultats de référence

•Déplacements u_v des nœuds B et C

•Contraintes O_{xx} des nœuds A , B , E

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

S. Timoshenko. *Résistance des Matériaux, 1ère partie*. Librairie Polytechnique Ch. Béranger, Paris, 1947, pp 163-168.

Titre: SSLP300 – Plaque rectangulaire en porte-à-faux en[...]

Date: 10/07/2015 Page: 4/5 Responsable: Thomas DE SOZA Clé: V3.02.300 Révision: 13405

Modélisation A

3.1 Caractéristiques de la modélisation A

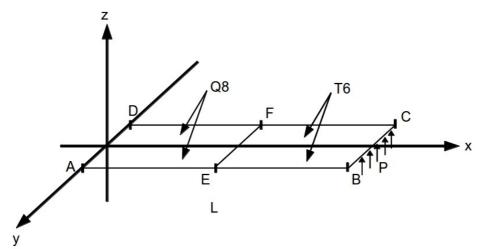


Figure 3.1. Maillage de la modélisation A

Modélisation C PLAN.

3.2 Caractéristiques du maillage

Nombre de nœuds : 185

Nombre de mailles et types : 20 QUAD8 et 40 TRIA6

3.3 Grandeurs testées et résultats

Grandeur	Comp osant e	Localisation	Valeur de référence	Type de référence	Tolérance (%)
DEPL	DY	B (N95)	$1.21 \times 10^{-3} m$	'ANALYTIQUE'	0.4
DEPL	DY	C (N156)	$1.21 \times 10^{-3} m$	'ANALYTIQUE'	0.5
SIGM_ELNO	SIXX	A (N1)	$3.78\times10^7 Pa$	'ANALYTIQUE'	1.5
SIGM_ELNO	SIXX	B (N95)	0. <i>Pa</i>	'NON_REGRESSION'	-
SIGM_ELNO	SIXX	E (N41)	$1.89\times10^7 Pa$	'ANALYTIQUE'	0.21

Remarques 3.4

La valeur de la contrainte O_{xx} en B n'est pas significative.

Version default

Date: 10/07/2015 Page: 5/5

Titre: SSLP300 - Plaque rectangulaire en porte-à-faux en[...]

Responsable : Thomas DE SOZA Clé : V3.02.300 Révision : 13405

4 Synthèse des résultats

Les résultats sont en très bon accord avec la solution analytique.