Date: 09/07/2015 Page: 1/5

Titre : SSLL112 - Voûte circulaire sous pression uniforme

Responsable : Jean-Luc FLÉJOU Clé : V3.01.112 Révision : 13349

SSLL112 - Voûte circulaire sous pression uniforme

Résumé:

Ce test permet de vérifier les efforts internes sur le modèle de poutre courbe POU_C_T.

Titre: SSLL112 - Voûte circulaire sous pression uniforme

Date: 09/07/2015 Page: 2/5 Responsable : Jean-Luc FLÉJOU Clé: V3.01.112 Révision: 13349

Problème de référence

1.1 Géométrie

1.1.1 Voûte circulaire

Figure 1.1.1-a: Voûte circulaire.

Rayon: R=1 m

1.2 Propriétés des matériaux

Module d'Young: $E = 2.10^{11} Pa$

Coefficient de Poisson: v = 0.3

Conditions aux limites et chargement 1.3

Condition aux limites :

DX = DY = DZ = DRX = 0 sur le point A

DY = DZ = 0 sur le point B

Chargement : Force répartie p=100N/m sur AB

Date: 09/07/2015 Page: 3/5

Titre : SSLL112 - Voûte circulaire sous pression uniforme

Responsable : Jean-Luc FLÉJOU Clé : V3.01.112 Révision : 13349

2 Solutions de référence

2.1 Méthode de calcul utilisée pour les solutions de référence

La poutre de la figure [Figure 1.1.1-a] vérifie les équations d'équilibre (problème plan).

$$V_y = \frac{dN}{d\theta}$$
, $N + \frac{dV_y}{d\theta} = -pR$, $\frac{dM}{d\theta} + RV_y = 0$

(p : chargement réparti constant normal en tout point de la poutre).

 $N(\theta)$, $V_y(\theta)$, $M_z(\theta)$ désignent les efforts (normal, tranchant et moment de flexion) en un point de la voûte exprimés dans le repère local.

Leur intégration avec les conditions limites :

$$V_{y}(0) = 0$$
, $M_{z}(0) = 0$

donnent:

$$V_{y}(\theta) = 0$$
, $M(\theta) = 0$, $N(\theta) = -pR$

2.2 Résultats de référence

Efforts intérieurs pour $\theta = 0^{\circ}, 6^{\circ}, 42^{\circ}$ et 60° .

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

[1] Rapport n° 2314/A de l'Institut Aérotechnique « Proposition et réalisation de nouveaux cas tests manquant à la validation des poutres ASTER »

Titre: SSLL112 - Voûte circulaire sous pression uniforme

Date: 09/07/2015 Page: 4/5 Responsable : Jean-Luc FLÉJOU Clé: V3.01.112 Révision: 13349

3 Modélisation A

3.1 Caractéristiques de la modélisation

Le modèle est composé de 30 éléments poutre courbe de Timoshenko.

3.2 Caractéristiques du maillage

Il est constitué de 30 éléments POU_C_T.

3.3 Grandeurs testées et résultats

Type d'effort	Référence	Écart (%)
<i>V</i> _y (0 °)	0.0000	5.00E-5
V _y (6°)	0.0000	5.00E-05
N (60°)	-1.000E+02	0.100
<i>MFZ</i> (42°)	0.0000	3.93E-05

Version default

Titre: SSLL112 - Voûte circulaire sous pression uniforme

Date: 09/07/2015 Page: 5/5 Responsable : Jean-Luc FLÉJOU Clé: V3.01.112 Révision: 13349

Synthèse des résultats 4

L'effort normal dans la voûte (seul effort non nul) est calculé avec une bonne précision (0.1%) pour la modélisation adoptée.