Titre : SSLL104 - Déformations initiales dans une poutre d[...]

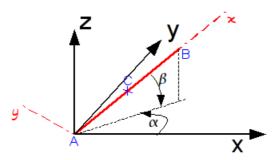
Responsable : Jean-Luc FLÉJOU

Date : 15/07/2014 Page : 1/7 Clé : V3.01.104 Révision : 12135

SSLL104 - Pré-déformations dans une poutre droite

Résumé:

Ce test valide la prise en compte de pré-déformations dans le calcul élastique d'une poutre droite. Les caractéristiques du calcul sont :


- analyse statique,
- comportement linéaire,
- modèle linéique,
- une seule modélisation testant les éléments POU_D_E, POU_D_T, POU_D_TG, POU_D_EM et POU D TGM
- la solution est analytique.

Titre: SSLL104 - Déformations initiales dans une poutre d[...]

Date: 15/07/2014 Page: 2/7 Responsable : Jean-Luc FLÉJOU Clé: V3.01.104 Révision: 12135

Problème de référence

1.1 Géométrie

Une poutre AB de longueur $l=100\,mm$ est située sur la trisectrice du trièdre (X,Y,Z): les coordonnées du point B sont : $B = \left(\frac{100}{\sqrt{3}}, \frac{100}{\sqrt{3}}, \frac{100}{\sqrt{3}}, \frac{100}{\sqrt{3}}\right)$

On définit aussi un point C milieu de A,B.

Le repère local (A, x, y, z) se déduit du repère global (A, X, Y, Z) par les angles nautiques $\beta = -35.26$ ° solution de $\cos \beta = \sqrt{\frac{2}{3}}$

1.2 Propriétés de matériaux

Le matériau est élastique linéaire.

Module d'Young E = 1.0 MPa (sans influence sur le résultat).

Coefficient de Poisson : v=0

1.3 Conditions aux limites et chargements

Encastrement en A: DX = DY = DZ = DRX = DRY = DRZ = 0.

Chargement : pré-déformation dans la repère local (A, x, y, z)

élongation suivant x : $\epsilon_X^0 = 0.001$

courbure autour de $y: \chi_{v}^{0} = 0.002$

courbure autour de z: $\chi_z^0 = 0.003$

1.4 Caractéristiques de la section de poutre

Toutes les caractéristiques (aire, inerties, ...) sont prises égales à 1. Elles sont sans influence sur le résultat.

Date: 15/07/2014 Page: 3/7

Titre : SSLL104 - Déformations initiales dans une poutre d[...]

Responsable : Jean-Luc FLÉJOU Clé : V3.01.104 Révision : 12135

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution est analytique. Elle est calculée dans le repère local. soit :

 $U = (u, v, w, \theta_x, \theta_y, \theta_z)$ le déplacement de la poutre et $E = (\epsilon_x, X_y, X_z, \gamma_{xy}, \gamma_{xz})$ la déformation généralisée.

Soit la solution :

$$u = \alpha x$$
 $v = \gamma \frac{x^2}{2}$ $w = -\beta \frac{x^2}{2}$ $\theta_x = 0$ $\theta_y = \beta x$ $\theta_z = \gamma x$

alors:

$$\epsilon_x = u_{,x} = \alpha$$
 $X_y = \theta_{y,x} = \beta$ $X_z = \theta_{z,x} = \gamma$ $Y_{xy} = v_{,x} - \theta_z = 0$ $Y_{xz} = w_{,x} + \theta_y = 0$

Si on choisit $\alpha = \epsilon_X (=0.001)$, $\beta = \chi_y^0 (=0.002)$, $\gamma = \chi_z^0 (=0.003)$ alors $E - E_{init} = 0$ et les efforts sont nuls : l'équilibre est donc vérifié. Par ailleurs, la solution vérifie les conditions aux limites d'encastrement en A . C'est donc la solution du problème posé.

2.2 Résultats de référence

Les résultats exprimés dans le repère local sont :

En B:

$$Dx = 0.10 \, mm$$
 ; $Dy = 15.0 \, mm$; $Dz = -10.0 \, mm$; $DRx = 0.0 \, rd$; $DRy = 0.2 \, rd$; $DRz = 0.30 \, rd$ En C :

$$Dx = 0.05 \text{ mm}$$
; $Dy = 3.75 \text{ mm}$; $Dz = -2.50 \text{ mm}$; $DRx = 0.0 \text{ rd}$; $DRy = 0.1 \text{ rd}$; $DRz = 0.15 \text{ rd}$

Dans le repère global, on trouve aux points B et C:

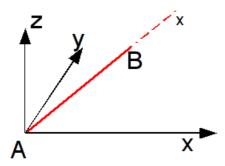
$$DX(B) = \frac{\sqrt{3}}{30} + 5\frac{\sqrt{3}}{6}(-3\sqrt{6} + 2\sqrt{2})[mm] \qquad DX(C) = \frac{\sqrt{3}}{60} + 5\frac{\sqrt{3}}{24}(-3\sqrt{6} + 2\sqrt{2})[mm]$$

$$DY(B) = \frac{\sqrt{3}}{30} + 5\frac{\sqrt{3}}{6}(3\sqrt{6} + 2\sqrt{2})[mm] \qquad DY(C) = \frac{\sqrt{3}}{60} + 5\frac{\sqrt{3}}{24}(3\sqrt{6} + 2\sqrt{2})[mm]$$

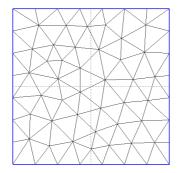
$$DZ(B) = \frac{\sqrt{3}}{30} + 5\frac{\sqrt{3}}{6}(-4\sqrt{2})[mm] \qquad DZ(C) = \frac{\sqrt{3}}{60} + 5\frac{\sqrt{3}}{24}(-4\sqrt{2})[mm]$$

$$DZ(C) =$$

2.3 Incertitude sur la solution


La solution est exacte pour la théorie des poutres d'Euler (ou de Timoshenko car il n'y pas de cisaillement). La torsion n'intervenant pas, la solution est aussi valable pour les éléments POU_D_TG et POU_D_TGM.

Titre : SSLL104 - Déformations initiales dans une poutre d[...]


Date: 15/07/2014 Page: 4/7 Responsable : Jean-Luc FLÉJOU Clé: V3.01.104 Révision: 12135

3 Modélisation A

Caractéristiques de la modélisation 3.1

- Le segment AB est découpé en 10 éléments de même longueur (10.). (Un seul élément serait suffisant).
- 5 calculs identiques sont successivement faits sur ce maillage avec 4 modélisations différentes :
 - avec 10 éléments POU D E
 - avec 10 éléments POU D T
 - avec 10 éléments POU D TG
 - avec 10 éléments POU D EM
 - avec 10 éléments POU D TGM

Maillage de la section :

- •77 nœuds
- •124 TRIA3

3.2 Caractéristiques du maillage

Nombre de nœuds : 11

Nombre de mailles et types : 10 SEG2

Titre: SSLL104 - Déformations initiales dans une poutre d[...]

Date: 15/07/2014 Page: 5/7 Responsable : Jean-Luc FLÉJOU Clé: V3.01.104 Révision: 12135

Grandeurs testées et résultats 3.3

Modélisation	Identification	Référence	% différence
POU_D_E	B DX	-6.4664E+00	< 1.0E-9
	DY	1.4747E+01	< 1.0E-9
	DZ	-8.1072E+00	< 1.0E-9
	DRX	-2.6390E-01	< 1.0E-9
	DRY	1.8947E-02	< 1.0E-9
	DRZ	2.4495E-01	< 1.0E-9
	C DX	-1.6022E+00	< 1.0E-9
	DY	3.7011E+00	< 1.0E-9
	DZ	-2.0124E+00	< 1.0E-9
	DRX	-1.3195E-01	< 1.0E-9
	DRY	9.4734E-03	< 1.0E-9
	DRZ	1.2247E-01	< 1.0E-9

Modélisation	Identification	Référence	% différence
POU_D_T	B DX	-6.4664E+00	< 1.0E-9
	DY	1.4747E+01	< 1.0E-9
	DZ	-8.1072E+00	< 1.0E-9
	DRX	-2.6390E-01	< 1.0E-9
	DRY	1.8947E-02	< 1.0E-9
	DRZ	2.4495E-01	< 1.0E-9
	C DX	-1.6022E+00	< 1.0E-9
	DY	3.7011E+00	< 1.0E-9
	DZ	-2.0124E+00	< 1.0E-9
	DRX	-1.3195E-01	< 1.0E-9
	DRY	9.4734E-03	< 1.0E-9
	DRZ	1.2247E-01	< 1.0E-9

Modélisation	Identification	Référence	% différence
POU_D_TG	B DX	-6.4664E+00	< 1.0E-9
	DY	1.4747E+01	< 1.0E-9
	DZ	-8.1072E+00	< 1.0E-9
	DRX	-2.6390E-01	< 1.0E-9
	DRY	1.8947E-02	< 1.0E-9
	DRZ	2.4495E-01	< 1.0E-9
	C DX	-1.6022E+00	< 1.0E-9
	DY	3.7011E+00	< 1.0E-9
	DZ	-2.0124E+00	< 1.0E-9
	DRX	-1.3195E-01	< 1.0E-9
	DRY	9.4734E-03	< 1.0E-9
	DRZ	1.2247E-01	< 1.0E-9

Modélisation	Identification	Référence	% différence
POU_D_EM	B DX	-6.4664E+00	< 1.0E-6
	DY	1.4747E+01	< 1.0E-5
	DZ	-8.1072E+00	< 1.0E-5
	DRX	-2.6390E-01	< 1.0E-5
	DRY	1.8947E-02	< 1.0E-4
	DRZ	2.4495E-01	< 1.0E-5
	C DX	-1.6022E+00	< 1.0E-6
	DY	3.7011E+00	< 1.0E-5
	DZ	-2.0124E+00	< 1.0E-5
	DRX	-1.3195E-01	< 1.0E-5
	DRY	9.4734E-03	< 1.0E-4
	DRZ	1.2247E-01	< 1.0E-5

Titre : SSLL104 - Déformations initiales dans une poutre d[...]

Date: 15/07/2014 Page: 6/7 Responsable : Jean-Luc FLÉJOU Clé: V3.01.104 Révision : 12135

Modélisation	Identification	Référence	% différence
POU_D_TGM	B DX	-6.4664E+00	< 1.0E-8
	DY	1.4747E+01	< 1.0E-8
	DZ	-8.1072E+00	< 1.0E-8
	DRX	-2.6390E-01	< 1.0E-8
	DRY	1.8947E-02	< 1.0E-8
	DRZ	2.4495E-01	< 1.0E-9
	C DX	-1.6022E+00	< 1.0E-10
	DY	3.7011E+00	< 1.0E-8
	DZ	-2.0124E+00	< 1.0E-8
	DRX	-1.3195E-01	< 1.0E-8
	DRY	9.4734E-03	< 1.0E-7
	DRZ	1.2247E-01	< 1.0E-8

Version default

Date: 15/07/2014 Page: 7/7

Titre: SSLL104 - Déformations initiales dans une poutre d[...]

Responsable : Jean-Luc FLÉJOU Clé : V3.01.104 Révision : 12135

4 Synthèse des résultats

Comme on pouvait s'y attendre, les résultats sont très précis. Ils valident la bonne prise en compte des pré-déformations dans les éléments de poutre.

Le test ne concerne pas les poutres courbes (POU_C_T) car on ne dispose pas de solution de référence. De plus l'option CHAR MECA EPSI R n'est plus disponible pour cet élément.