Titre: SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

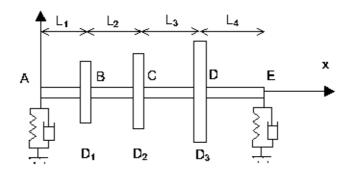
Date: 28/05/2015 Page: 1/6 Responsable: Mohamed-Amine HASSINI Clé: V2.06.102 Révision: 13116

# SHLL102 – Réponse harmonique d'une poutre avec 3 disques, soumise à l'effet gyroscopique.

### Résumé:

Ce problème consiste à valider l'effet de la matrice gyroscopique sur une poutre appuyée à chacune de ses extrémités, sur des appuis linéaires, sur un calcul harmonique avec un chargement du type balourd. La poutre est pleine, de section circulaire et comporte trois disques.

Pour ce cas test, le chargement du type balourd est installé sur le disque 2. La comparaison porte sur la valeur des pics de résonance des déplacements du disque 2.


Ce problème permet donc de tester l'effet de la matrice gyroscopique qui a été développé pour une poutre droite. L'effet gyroscopique conduit à modifier les fréquences de résonance et les amplitudes déplacements.

Les résultats obtenus sont en bon accord avec ceux donnés en référence. Les références sont basées sur la théorie des poutres de Timoshenko.

Titre: SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

Date: 28/05/2015 Page: 2/6 Responsable: Mohamed-Amine HASSINI Clé: V2.06.102 Révision: 13116

# Problème de référence



#### 1.1 Géométrie

### Modélisation:

|              | Masse ( kg ) | $I_{xx}$ ( $kg.m^2$ ) | $I_{yy} = I_{zz} (kg.m^2)$ |
|--------------|--------------|-----------------------|----------------------------|
| Disque $D_1$ | 14.580130    | 0.1232021             | 0.6463858                  |
| Disque $D_2$ | 45.945793    | 0.97634809            | 0.4977460                  |
| Disque $D_3$ | 55.134951    | 1.1716177             | 0.6023493                  |

Tableau 1.1-1 : Caractéristiques des disques

### Longueur de la poutre :

 $L_1 = AB = 0.2 \, m$ 

 $L_2 = BC = 0.3 m$ 

 $L_3 = CD = 0.5 m$ 

 $L_A = DE = 0.3 m$ 

### Section circulaire:

Diamètre :  $D = 0.1 \, m$ 

### Propriétés de matériaux 1.2

 $E = 2.10^{11} Pa$ 

v=0.3

 $\rho = 7800 \, kg / m^3$ 

### 1.3 Conditions aux limites et chargements

Appuis élastiques avec amortissement visqueux en A et en E

$$K_{yy} = 5.10^7 N.m^{-1}$$
;  $K_{zz} = 7.10^7 N.m^{-1}$ ;  $K_{yz} = K_{zy} = 0$   
 $C_{yy} = 5.10^2 N/(m.s^{-1})$ ;  $C_{zz} = 7.10^2 N/(m.s^{-1})$ ;  $C_{yz} = C_{zy} = 0$ 

Date: 28/05/2015 Page: 3/6

Titre : SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

Responsable : Mohamed-Amine HASSINI Clé : V2.06.102 Révision : 13116

# 2 Solution de référence

## 2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est celle présentée dans l'ouvrage de Michel LALANNE et Guy FERRARIS.

Les résustats numériques ont été obtenus par un code éléments finis, dans des éléments poutre de type Timoshenko. La modélisation est réalisée avec 14 nœuds (13 éléments poutres).

### 2.2 Résultats de référence

Avec un chargement de type balourd, valeurs des 7 maximas d'amplitude pour le point  $\,C\,$  (disque 2), pour une vitesse de rotation variant de  $\,0\,$  à  $\,30000\,tr/min\,$ .

### 2.3 Incertitude sur la solution

Inférieure à 1%.

# 2.4 Références bibliographiques

1.Michel LALANNE and Guy FERRARIS, Rotordynamics, Prediction in Engineering, JOHN WILEY AND SONS (1990).

Titre: SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

Date: 28/05/2015 Page: 4/6 Responsable: Mohamed-Amine HASSINI Clé: V2.06.102 Révision: 13116

### **Modélisation A** 3

#### 3.1 Caractéristiques de la modélisation

**Modélisation** : 13 Éléments équi-répartis de poutre POU D T dans la direction x

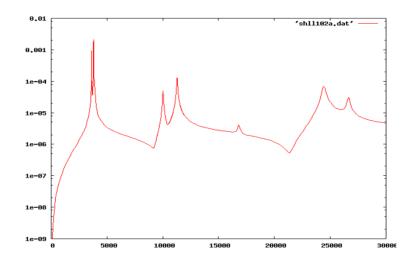
#### 3.2 Caractéristiques du maillage

Nombre de nœuds : 14 Maillage:

Nombre de mailles et types : 13 SEG2

### Chargement 3.3

Balourd de valeur  $0.05 \, m.kg$ , installé sur le nœud C (disque 2).


Titre : SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

Date: 28/05/2015 Page: 5/6 Responsable: Mohamed-Amine HASSINI Clé: V2.06.102 Révision: 13116

#### 4 Résultats

| Fréquence en $Hz$ | Excentricité de référence ( $m$ ) | Excentricité Aster ( m ) | % Différence |
|-------------------|-----------------------------------|--------------------------|--------------|
| 60.34             | 9.38E-04                          | 9.3763E-04               | 0.039        |
| 63.3              | 2.1E-03                           | 2.0960E-03               | 0.190        |
| 166.97            | 4.99E-05                          | 4.9921E-05               | 0.042        |
| 188.02            | 1.3E-04                           | 1.3025E-04               | 0.195        |
| 279.78            | 4.21E-06                          | 4.2042E-06               | 0.138        |
| 406.97            | 6.84E-05                          | 6.8300E-05               | 0.146        |
| 443.52            | 3.11E-05                          | 3.0666E-05               | 1.41         |

Tableau 4-1 : Excentricités en fonction des fréquences



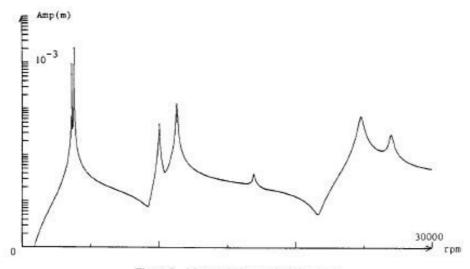



Figure 7 Mass unbalance response: n = 8



Version default

Titre : SHLL102 - Réponse harmonique d'une poutre avec 3 d[...]

Date: 28/05/2015 Page: 6/6 Responsable: Mohamed-Amine HASSINI Clé: V2.06.102 Révision: 13116

### 5 Synthèse des résultats

On constate que les calculs de Code\_Aster reproduisent fidèlement ceux de la référence. On constate une bonne implantation de l'effet gyroscopique pour l'élément de poutre, dans le cas de calcul harmonique.