Date: 29/06/2015 Page: 1/12 Clé: V2.03.128 Responsable: Matthieu JACQUET Révision: 13256

SDLS128 - Sollicitation sismique d'une colonne de sol avec le modèle linéaire équivalent

Résumé:

L'objectif de ce test est de valider le modèle linéaire équivalent développé sous Code Aster dans la macro DEFI SOL EQUI. Cette macro permet de calculer la réponse d'une colonne de sol à une sollicitation sismique en utilisant le modèle linéaire équivalent en déconvolution ou reconvolution. Elle fournit en sortie les signaux à différentes profondeurs et les propriétés dégradées de sol en accord avec les niveaux de déformations de cisaillement observés.

Le modèle linéaire équivalent est basé sur le modèle visco-élastique de Kelvin-Voigt. L'amortissement y est modélisé par un amortissement hystérétique. La méthode de résolution de la macro est une procédure itérative, où on évalue à chaque itération pour chaque couche des caractéristiques linéaires équivalentes à partir des courbes de dégradation du module de cisaillement G et de l'augmentation de l'amortissement hystérétique. Le lecteur se reportera à la documentation d'utilisation de la macro (U4.84.31) ou au cas-test (SDNX100e) pour plus de précisions.

Le modèle mis en œ uvre est une colonne de sol de 168 mètres de profondeur constituée de trois couches de matériaux (sable, argile, roche), soumise à une excitation sismique définie en déconvolution.

Les données du cas-test sont tirées du benchmark KARISMA. Les résultats obtenus sont comparés à ceux délivrés par l'équipe organisatrice du benchmark en terme de profil de sol dégradé et de signaux à différentes profondeurs. Les résultats montrent une bonne correspondance entre le profil de sol dégradé fourni dans le benchmark et celui obtenu par la macro DEFI SOL EQUI.

Date: 29/06/2015 Page: 2/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

Problème de référence

1.1 Géométrie

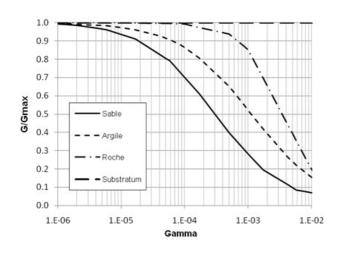
On considère une colonne de sol stratifié 2D de 168m de profondeur et de 1m de coté.

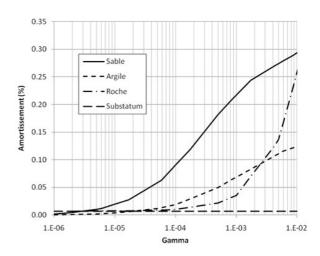
Stratrigraphie et données matériaux 1.2

La figure ci-dessous représente la stratigraphie de la colonne de sol ainsi que les propriétés matériaux associées. Pour résumer, il y a 8 m de sable, 10 m d'argile et 150 m de roche. Passé 168m, le demiespace infini caractérise le substratum rocheux.

Attitude T.M.S.L. (m)	Geological Layer	Soil type (Sand, clay or rock)	Shear Wave Velocity Vs (m/s)	Primary Wave Velocity Vp (m/s)	Unit Weight γ (kN/m3)	Poisson's Ratio V	Elastic Shear Modulus G0 (kN/m2)	Strain dependent soil properties
(+12.0) +8.0	Sand	Sand	150	310	16.1	0.347	36 000	Sand
+4.0		Sand	200	380	16.1	0.308	65 700	
-6.0	Yasuda	Clay	330	1240	17.3	0.462	192 000	Clay
-33.0		Rock	490	1640	17.0	0.451	416 000	
-90.0	Nishiyama	Rock	530	1700	16.6	0.446	475 000	Rock
		Rock	590	1710	17.3	0.432	614 000	
-136.0		Rock	650	1790	19.3	0.424	832 000	
-155.0 The free surface of ∞	Nishiyama	Rock	720	1900	19.9	0.416	1 050 000	N/A

Figure 1.2-1: Stratigraphie de la colonne de sol


Responsable: Matthieu JACQUET


Clé : V2.03.128 Révision : 13256

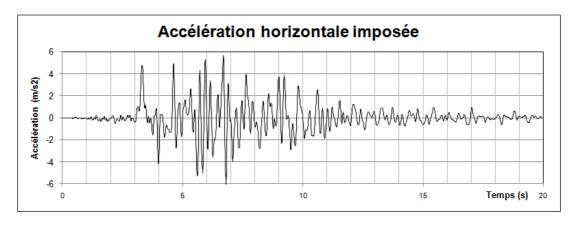
Date: 29/06/2015 Page: 3/12

1.3 Courbe de dégradation du module de cisaillement et d'augmentation de l'amortissement

L'évolution du module de cisaillement G et de l'amortissement D sont donnés par les courbes suivantes :

Le module de cisaillement G est lié au module d'Young E et à la vitesse de cisaillement Vs par la formule suivante :

$$G = \frac{E}{2.(1+v)} = \rho. Vs^2$$


avec p masse volumique, et v coefficient de poisson

1.4 Chargement

La colonne est soumise à une accélération imposée horizontalement dans la direction X en champ libre (déconvolution).

Le signal appliqué correspond au séisme de Niigata-Ken Chuetsu Oki (NCO) (16 Juillet 2007), d'une magnitude de 6,6 et de PGA (Peak Ground Accélération) égal à 0,6 g.

Le signal, représenté ci-dessous, a une durée de 19,99 s et est échantillonné à un pas de 0,01 s.

Date: 29/06/2015 Page: 4/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

Solution de référence

2.1 Grandeurs et résultats de référence

Les résultats de référence utilisés sont les données délivrées par le bureau d'étude Géodynamique & Structure à l'équipe organisatrice du benchmark [1], en terme de :

Profil de sol dégradé :

- Profil de G/Gmax en fonction de la profondeur
- Profil de l'amortissement en fonction de la profondeur
- Profil de déformation (Gamma = 2*SIXY) en fonction de la profondeur

Signaux à différentes profondeurs :

Signaux en champ libre, à 26 m et 167 m de profondeur

Ces résultats ont été obtenus avec le logiciel SHAKE.

2.2 Références bibliographiques

[1] Ground Response Analysis Kashiwasaki-Kariwa nuclear plant, UNIT 7 R/B, Géodynamique & Structure, Project 59-10, 05/11

Date: 29/06/2015 Page: 5/12

Titre: SDLS128 - Sollicitation sismique d'une colonne de [...]

Responsable : Matthieu JACQUET Clé : V2.03.128 Révision : 13256

3 Modélisation A

3.1 Géométrie et maillage

Le tableau ci-après contient la description géométrique des couches de sol stratifié et les propriétés initiales des matériaux constitutifs de ces couches, couche par couche.

La colonne possède :

- 4m de sable, discrétisés en 4 couches d'un mètre
- 4m de sable, discrétisés en 4 couches d'un mètre
- 10m d'argile, discrétisés en 5 couches de 2 mètres
- 149m de roche, discrétisés en 40 couches d'hauteur variable
- · une couche d'un mètre de substratum

La colonne est constituée au total de 49 couches de sols posées sur un substratum représenté par une 50ième couche. Chaque couche est constitué d'une maille QUAD4 en modélisation D_PLAN.

Les courbes G/Gmax et D sont affectées aux différentes couches par la colonne Gdgam de la table de sol. L'amortissement hystérétique initiale est égal à deux fois la valeur initiale donnée par les courbes D-gamma.

3.2 Conditions aux limites

La macro applique à la colonne de sol les conditions aux limites suivantes :

- Bords droit et gauche de la colonne : Condition de périodicité. Cela signifie que les déplacements des nœuds des faces gauche et droite en vis-à-vis sont rendus égaux.
- Bas de la colonne : Affectation d'un élément de frontière absorbante. Ses caractéristiques mécaniques sont renseignées dans la table des matériaux en indiquant l'élément maillé correspondant (ici BAS) et en lui donnant une épaisseur fictive (ici 1m)

On peut de cette manière définir directement le substratum. Il n'est pas nécessaire de mailler une couche de substratum en fin de colonne. Cela a été fait ici (COUCHE50) à but pédagogique pour avoir une représentation visuelle du substratum. Cependant comme l'élément absorbant représente le demi-espace infini, on peut le renseigner directement ainsi sans en mailler une partie.

3.3 Formulation du linéaire équivalent

La formulation de Lysmer est utilisé pour le calcul, à savoir que G* s'écrit :

$$G^* = G[(1-2\xi^2) + 2\xi j \sqrt{1-\xi^2}]$$

Cette formulation permet d'obtenir l'égalité entre la valeur réelle de G et le module de G complexe. Ceci se fait en ajoutant le mot-clé CORR_AMOR égal à oui.

Date: 29/06/2015 Page: 6/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

Profondeur (m)	Couche	RHO	<u>Emax</u>	NU	<u>AH</u>	<u>GDgam</u>
1	COUCHE1	1610	9.70E+07	0.347	0.0038	1
2	COUCHE2	1610	9.70E+07	0.347	0.0038	1
3	COUCHE3	1610	9.70E+07	0.347	0.0038	1
4	COUCHE4	1610	9.70E+07	0.347	0.0038	1
5	COUCHE5	1610	1.72E+08	0.308	0.0038	1
6	COUCHE6	1610	1.72E+08	0.308	0.0038	1
7	COUCHE7	1610	1.72E+08	0.308	0.0038	1
8	COUCHE8	1610	1.72E+08	0.308	0.0038	1
10	COUCHE9	1730	5.61E+08	0.462	0.0012	2
12	COUCHE10	1730	5.61E+08	0.462	0.0012	2
14	COUCHE11	1730	5.61E+08	0.462	0.0012	2
16	COUCHE12	1730	5.61E+08	0.462	0.0012	2
18	COUCHE13	1730	5.61E+08	0.462	0.0012	2
21	COUCHE14	1700	1.21E+09	0.451	0.014	3
24	COUCHE15	1700	1.21E+09	0.451	0.014	3
27	COUCHE16	1700	1.21E+09	0.451	0.014	3
30	COUCHE17	1700	1.21E+09	0.451	0.014	3
33	COUCHE18	1700	1.21E+09	0.451	0.014	3
36	COUCHE19	1700	1.21E+09	0.451	0.014	3
39	COUCHE20	1700	1.21E+09	0.451	0.014	3
42	COUCHE21	1700	1.21E+09	0.451	0.014	3
45	COUCHE22	1700	1.21E+09	0.451	0.014	3
49	COUCHE23	1660	1.37E+09	0.446	0.014	3
53	COUCHE24	1660	1.37E+09	0.446	0.014	3
55	COUCHE25	1660	1.37E+09	0.446	0.014	3
61	COUCHE26	1660	1.37E+09	0.446	0.014	3
65	COUCHE27	1660	1.37E+09	0.446	0.014	3
69	COUCHE28	1660	1.37E+09	0.446	0.014	3
73	COUCHE29	1660	1.37E+09 1.37E+09	0.446	0.014	3
73 77		1660		0.446	0.014	3
81	COUCHE30	1660	1.37E+09			<u>3</u>
	COUCHE31		1.37E+09	0.446	0.014	
85	COUCHE32	1660	1.37E+09	0.446	0.014	3
89	COUCHE33	1660	1.37E+09	0.446	0.014	3
93	COUCHE34	1660	1.37E+09	0.446	0.014	3
97	COUCHE35	1660	1.37E+09	0.446	0.014	3
102	COUCHE36	1660	1.37E+09	0.446	0.014	3
107	COUCHE37	1730	1.76E+09	0.432	0.014	3
112	COUCHE38	1730	1.76E+09	0.432	0.014	3
117	COUCHE39	1730	1.76E+09	0.432	0.014	3
122	COUCHE40	1730	1.76E+09	0.432	0.014	3
127	COUCHE41	1730	1.76E+09	0.432	0.014	3
132	COUCHE42	1730	1.76E+09	0.432	0.014	3
137	COUCHE43	1730	1.76E+09	0.432	0.014	3
142	COUCHE44	1730	1.76E+09	0.432	0.014	3
148	COUCHE45	1730	1.76E+09	0.432	0.014	3
153	COUCHE46	1930	2.37E+09	0.424	0.014	3
158	COUCHE47	1930	2.37E+09	0.424	0.014	3
163	COUCHE48	1930	2.37E+09	0.424	0.014	3
167	COUCHE49	1930	2.37E+09	0.424	0.014	3
168	COUCHE50	1930	2.97E+09	0.416	0.014	4
169	BAS	1930	2.97E+09	0.416	0.014	4

Tableau 3.3-1: Description géométrique des couches et caractéristiques initiales des matériaux couche par couche

Date: 29/06/2015 Page: 7/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

3.4 Grandeurs testées et résultats

Les résultats obtenus sont comparés à la référence en terme de profil de sol (G/Gmax, Amortissement), de niveaux de déformation de cisaillement dans les couches et de signaux à différentes profondeurs.

Point A : Z = 3,5 m : Zone de plus forte déformation)

Point B: Z = 167 m: Bas de la colonne

Identification	Type de référence	Valeur de référence	Tolérance
Point A - GGmax	'SOURCE_EXTERNE'	8.40E-2	5 %
Point A - Damping	'SOURCE_EXTERNE'	5.56E-1	5%
Point A - Gamma	'SOURCE_EXTERNE'	9.97E-3	5%
Point B - GGmax	'SOURCE_EXTERNE '	9.57E-1	5%
Point B - Damping	'SOURCE_EXTERNE'	3.6E-3	5%
Point B - Gamma	'SOURCE_EXTERNE'	4.44E-4	5%

Identification	Type de référence	Valeur de référence	Tolérance	
Point A - GGmax	'NON_REGRESSION'	0.0834019	0.001%	
Point A - Damping	'NON_REGRESSION'	0.557462	0.001%	
Point A - Gamma	'NON_REGRESSION'	0.00990414	0.001%	
Point B - GGmax	'NON_REGRESSION'	0.956438	0.001%	
Point B - Damping	'NON_REGRESSION'	0.0361128	0.001%	
Point B - Gamma	'NON_REGRESSION'	0.000436344	0.001%	

Date: 29/06/2015 Page: 8/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

Comparaison des profils de sol

Les figures suivantes représentent une comparaison par rapport à la solution de référence, des évolutions de :

- G/Gmax en fonction de la profondeur
- l'amortissement en fonction de la profondeur
- de la distorsion en fonction de la profondeur

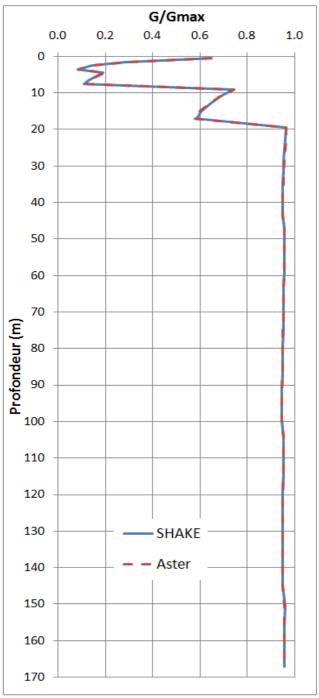


Figure 3.4-1: Comparaison Shake - Code_Aster G/Gmax

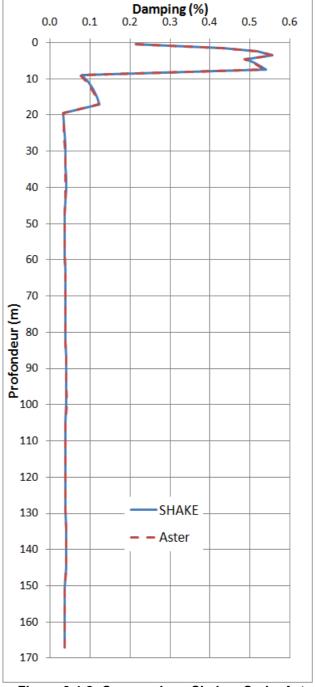
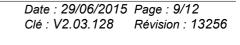
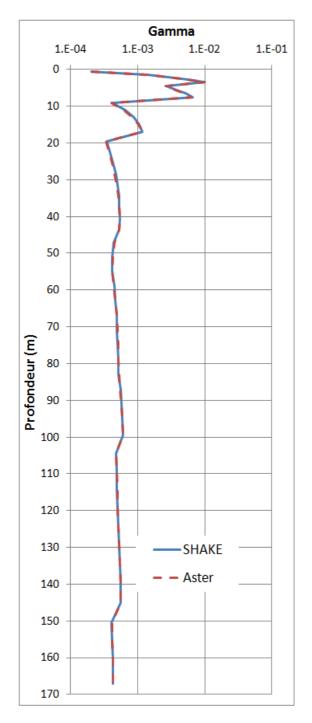
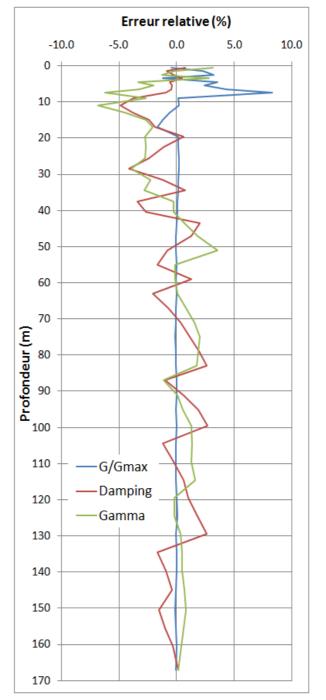




Figure 3.4-2: Comparaison Shake - Code_Aster **Amortissement**

Responsable: Matthieu JACQUET



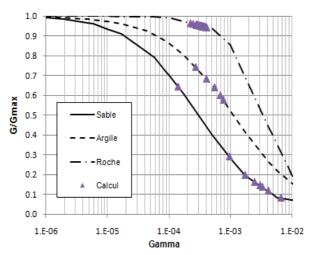

Figure 3.4-3: Comparaison Shake- Code_Aster Distorsion

Figure 3.4-4: Erreur relative (%) (Référence Shake)

Responsable : Matthieu JACQUET

Date : 29/06/2015 Page : 10/12 Clé : V2.03.128 Révision : 13256

Le graphe suivant montre les niveaux de déformations obtenus dans chaque couche de matériaux sur la courbe G/Gmax.

Pour tracer cette figure, il faut considérer les gamma effectifs (COEF_GAMMA*Gamma_max) et non directement les gamma maxima (qui sont donnés dans la table resu (unité 39)).

Comparaison signaux

Les figures suivantes représentent une comparaison des signaux calculés et mesurés en champ libre et aux profondeurs 26 m et 167m.

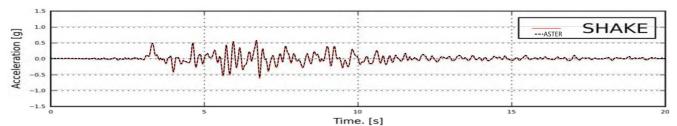


Figure 1: Comparaison des signaux en champ libre (Input)

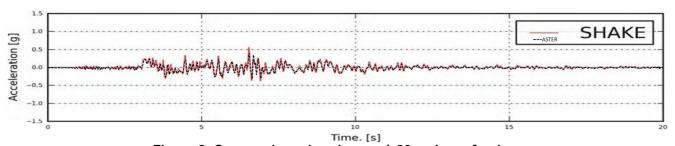


Figure 2: Comparaison des signaux à 26 m de profondeur

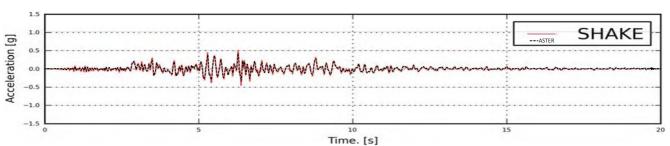
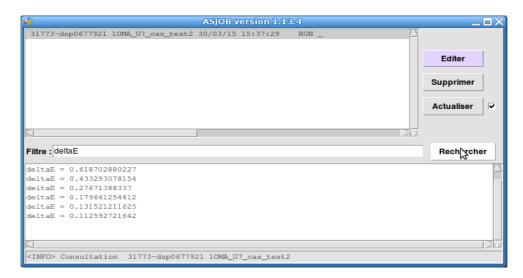


Figure 3: Comparaison des signaux à 167 m de profondeur

Révision: 13256

Date: 29/06/2015 Page: 11/12


Clé: V2.03.128

Titre: SDLS128 - Sollicitation sismique d'une colonne de [...]

Responsable : Matthieu JACQUET

3.5 Remarques

 L'utilisateur peut suivre l'évolution du calcul en relevant la variation de deltaE (paramètre RESI_RELA en entrée). Pour cela, il suffit de sélectionner le job dans astk et rechercher le terme deltaE.

• Le calcul a convergé en 8 itérations avec comme valeur finale de RESI_RELA 3,8 %. Ceci signifie que la variation maximale relative du module d'Young entre les deux dernières itérations sur l'ensemble des couches est de 3,8 %.

Date: 29/06/2015 Page: 12/12 Responsable: Matthieu JACQUET Clé: V2.03.128 Révision: 13256

3.6 Synthèse des résultats

Le modèle linéaire équivalent implémenté dans DEFI SOL EQUI donne des résultats identiques au logiciel SHAKE pour ce cas-test de déconvolution du benchmark KARISMA. Le profil de sol dégradé obtenu ainsi que les signaux relevés à diverses profondeurs sont similaires.

Le chargement sismique appliqué génère dans les couches superficielles (couche de sable entre 0 et 8 m) des déformations importantes, aux frontières du domaine de validité du modèle linéaire équivalent. On observe dans cette zone de déformation les différentes les plus significatives avec une erreur relative maximale de 8 % sur la valeur de G/Gmax. 6,8 % sur les déformations et 4,5 % sur la valeur d'amortissement. Sur le reste du profil, les résultats sont identiques à une erreur relative près inférieure à 5 %.

A noter que le niveau de déformation maximum calculé dans la colonne est en dehors du domaine de validité de la méthode qui est de l'ordre de 10⁻³.