Révision: 11126

Date: 17/06/2013 Page: 1/7

Clé: V2.02.102

Titre : SDLL102 - Portique soumis à des forces électrodyna[...]

Responsable : Nicolas RELUN

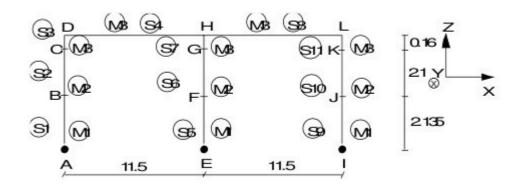
SDLL102 - Portique soumis à des forces électrodynamiques

Résumé:

Ce test est un problème tridimensionnel de calcul dynamique transitoire direct avec des forces réparties d'origine électrodynamique appliquées à un portique (barre sur 3 colonnes isolantes d'un poste de transformation).

Ce test a été fourni par le Centre d'Etudes du Réseau de Transport (EDF-DEPT). Il a été complété depuis par un benchmark international établi à partir de mesures expérimentales (résultats de plusieurs codes étrangers) : test CIGRE-structure D.

Il permet de comparer des résultats de déplacements par rapport à ceux obtenus par d'autres codes industriels utilisant une méthode éléments finis ou différences finies.


Ce test contient une modélisation avec des éléments de type SEG2.

Titre: SDLL102 - Portique soumis à des forces électrodyna[...]

Date: 17/06/2013 Page: 2/7 Responsable: Nicolas RELUN Clé: V2.02.102 Révision: 11126

Problème de référence

1.1 Géométrie

Sections transversales de poutres :

charpente support

$$SI:$$
 $A = 1.2061 \cdot 10^{-2} m^2$ $I_z = 2.3681 \cdot 10^{-5} m^4$
 $S5:$ $A = 1.4621 \cdot 10^{-2} m^2$ $I_z = 2.8709 \cdot 10^{-5} m^4$
 $S9:$ $A = 1.5530 \cdot 10^{-2} m^2$ $I_z = 3.0493 \cdot 10^{-5} m^4$

colonnes isolantes

$$S2:$$
 $A=3.1428 ext{ } 10^{-2} ext{ } m^2$ $I_z=4.5070 ext{ } 10^{-5} ext{ } m^4$ $S6:$ $A=3.2592 ext{ } 10^{-2} ext{ } m^2$ $I_z=4.6738 ext{ } 10^{-5} ext{ } m^4$ $S10:$ $A=3.3416 ext{ } 10^{-2} ext{ } m^2$ $I_z=4.7927 ext{ } 10^{-5} ext{ } m^4$

raccords

S3, S11:
$$A = 3.1944 \cdot 10^{-2} m^2$$
 $I_z = 1.15 \cdot 10^{-5} m^4$
S7: $A = 4.2130 \cdot 10^{-2} m^2$ $I_z = 1.15 \cdot 10^{-5} m^4$

conducteurs

$$S4, S8$$
: circulaire $R = 6.055 \cdot 10^{-2} m$ $e = 6.2 \cdot 10^{-3} m$

Propriétés de matériaux 1.2

$$\begin{array}{llll} \mathit{M1} : & E = 2.10^{11} \mathit{Pa} & \rho = 8000 \, \mathit{kg/m}^3 & \text{(charpente support)} \\ \mathit{M2} : & E = 5.10^{10} \mathit{Pa} & \rho = 2500 \, \mathit{kg/m}^3 & \text{(colonne isolante)} \\ \mathit{M3} : & E = 7.10^{10} \mathit{Pa} & \rho = 2700 \, \mathit{kg/m}^3 & \text{(raccord et conducteur aluminium)} \end{array}$$

Version default

Date: 17/06/2013 Page: 3/7

Titre : SDLL102 - Portique soumis à des forces électrodyna[...]

Responsable : Nicolas RELUN Clé : V2.02.102 Révision : 11126

1.3 Conditions aux limites et chargements

Points A , E , I : encastrement

Points D , L : non-continuité de u_x , θ_y , θ_z

Forces de Laplace sur les conducteurs DH, HL;

- courant biphasé $\phi = \omega = 100 \, m$
- conducteurs infinis séparés de 1 m

$$I = I_{eff} \sqrt{2} (\cos(\omega t + \phi) - e^{-t/\tau} \cos \phi)$$

 $I_{\it eff}$ intensité efficace du courant

- au constante de temps
- · deux court-circuit avec réenclenchement

$$t 0 < t \le 0.135$$

$$0.580 \le t \le 0.885$$

$$I_{eff}$$
 15.6 kA

$$\tau = 0.066 s$$

$$0.062 \, s$$

1.4 Conditions initiales

t=0, vitesse et accélération nulles.

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

- mesures expérimentales,
- méthodes numériques Différences Finies ou Éléments Finis.

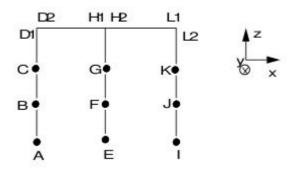
$$I = I_{eff} \sqrt{2} (\cos(\omega t + \phi) - e^{-t/\tau} \cos \phi)$$

2.2 Incertitude sur la solution

La dispersion des valeurs calculées est considérée comme comprise entre 5% et 10%.

2.3 Références bibliographiques

1) G. DEVESA : "Calcul des efforts électrodynamiques sur des structures de conducteurs rigides des postes électriques : implantation dans le code de calcul mécanique *Aster* et Validation". Note HM-72/5904


Titre: SDLL102 - Portique soumis à des forces électrodyna[...]

Date: 17/06/2013 Page: 4/7 Responsable: Nicolas RELUN Clé: V2.02.102 Révision: 11126

Modélisation A 3

3.1 Caractéristiques de la modélisation

Modélisation POU D E

Discrétisation:

éléments $\it AB$, $\it EF$, $\it IJ$: 10 mailles : SEG2 éléments BC, FG, JK: 10 mailles: SEG2 éléments CD1, GH1, KL1: 1 maille: SEG2

éléments D2H1, H2L1: 30 mailles: SEG2

Évolution dynamique sur 1s discrétisée en pas de temps de $5.10^{-4} s$ avec l'algorithme de NEWMARK (a=0.25, d=0.5).

Stockage des résultats tous les 20 pas de temps soit 10^{-2} s.

Caractéristiques du maillage 3.2

Nombre de nœuds : 126

Nombre de mailles et types : 123 mailles SEG2

3.3 Grandeurs testées et résultats

Identification	Référence essai	
t = 0.12 s		
u_{y} en $C2$		
M_x en SI	–3140. Nm	
M_x en $S2$	–10150. Nm	
M_x en $S3$	–3130. Nm	
M_z en $C2$	1431. Nm	
t = 0.70 s		
$u_{_{\scriptscriptstyle V}}$ en $C2$		
M_x en SI	–6080. Nm	
M_x en $S2$	–19670. Nm	
M_x en $S3$	–6060. Nm	
M_z en $C2$	2746. Nm	

Titre : SDLL102 - Portique soumis à des forces électrodyna[...]

Responsable : Nicolas RELUN

Clé : V2.02.102 Révision : 11126

Date: 17/06/2013 Page: 5/7

Maxima obtenus à $t=0.12\,s$ (1er court-circuit) ou $t=0.70\,s$ (2ème court-circuit) ou réenclenchement (conformité essais-calcul).

3.4 Remarques

Les résultats obtenus par $Code_aster$ sont satisfaisants par rapport aux autres codes. Ils sont presque toujours inférieurs aux mesures (effets des charpentes AB, EF, IJ sur-évalués). Les maxima sont écrêtés du fait du stockage périodique.

Contenu du fichier résultats :

Déplacements tous les $10^{-2} s$ et efforts dans les éléments aux temps t = 0.12 s, t = 0.27 s, t = 0.70 s.

Titre: SDLL102 - Portique soumis à des forces électrodyna[...]

Date: 17/06/2013 Page: 6/7 Responsable: Nicolas RELUN Clé: V2.02.102 Révision: 11126

Modélisation B 4

Une modélisation B a été ajoutée pour tester les éléments de poutre avec gauchissement POU D TG. Les coefficients supplémentaires ont été choisis de façon arbitraire :

$$AY = AZ = 1.0$$

$$EY = EZ = JG = 0.0$$

4.1 Grandeurs testées et résultats

	Référence essai	Références de non- régression	% tolérance essais/non régression
t = 0.12 s			
u_{v} en $C2$		60.5 mm	N.A./0.2
M_x en SI	–3140. Nm	–3108. Nm	2.0/0.1
M_x en $S2$	–10150. Nm	–9255. Nm	9.0/0.1
M_{x} en $S3$	–3130. Nm	–2948. Nm	3.0/0.1
M_z en $C2$	1431. Nm	1304. Nm	9.0/0.1
t = 0.70 s			
u_{v} en $C2$		118.9 mm	N.A/0.1
M_x en SI	–6080. Nm	–6150. Nm	2.0/0.1
M_x en $S2$	–19670. Nm	–18523. Nm	6.0/0.1
M_x en $S3$	–6060. Nm	–5928. Nm	3.0/0.1
M_z en $C2$	2746. Nm	2602. Nm	6.0/0.1

Version default

Date: 17/06/2013 Page: 7/7

Titre : SDLL102 - Portique soumis à des forces électrodyna[...]

Responsable : Nicolas RELUN Clé : V2.02.102 Révision : 11126

5 Synthèse des résultats

Les résultats sont acceptables par rapport aux résultats d'essais et situent des valeurs produites par Code_Aster en bonne place parmi la dizaine de résultats d'autres logiciels.