Date: 30/07/2015 Page: 1/6

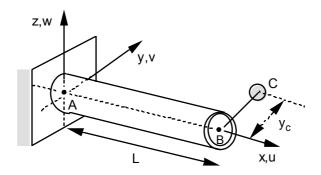
Titre : SDLL15 - Poutre élancée, encastrée-libre, avec mas[...]

Responsable : Albert ALARCON Clé : V2.02.015 Révision : 13723

SDLL15 - Poutre élancée, encastrée-libre, avec masse ou inertie excentrée

Résumé:

Ce problème tridimensionnel consiste à calculer les fréquences et les modes de vibration d'une structure mécanique composée d'une poutre droite élancée, encastrée-libre, à section tubulaire et d'une masse excentrée attachée à l'extrémité libre de la poutre. Ce test de Mécanique des Structures correspond à une analyse dynamique d'un modèle linéique ayant un comportement linéaire. Il comporte une seule modélisation.


Ce problème permet de tester l'élément de poutre d'Euler Bernouilli, le modèle de masse ponctuelle et le calcul modal par la méthode de Lanczos.

Les résultats obtenus sont en bon accord avec ceux du guide VPCS. Les deux calculs effectués (excentricité de la masse ponctuelle nulle ou différente de zéro) permettent de mettre en évidence le couplage des différents modes quand la masse ponctuelle est excentrée.

Date: 30/07/2015 Page: 2/6 Responsable: Albert ALARCON Clé: V2.02.015 Révision: 13723

Problème de référence

1.1 Géométrie

Coordonnées des points (en m):

	A	B	C
x	0.	10.	10.
\overline{y}	0.	0.	yc
\overline{z}	0.	0.	0.

longueur de la poutre : $AB = L = 10 \, m$ masse ponctuelle en $C: m_c = 1000 \, kg$

Section tubulaire:

diamètre extérieur $de = 0.350 \, m$ diamètre intérieur $di = 0.320 \, m$

aire $A = 1.5786510^{-2} m^2$ inertie $Iy = Iz = 2.2189910^{-4} m^4$ inertie polaire $Ip = 4.4379810^{-4} m^4$

2 cas étudiés : 1) yc = 0. 2) yc = 1.m

Propriétés de matériaux 1.2

$$E = 2.1 \, 10^{11} Pa$$

$$\rho = 7800 \, kg/m^3$$

1.3 Conditions aux limites et chargements

Point A encastré : ($u\!=\!v\!=\!w\!=\!0$, $\theta_x\!=\!\theta_y\!=\!\theta_z\!=\!0$).

1.4 **Conditions initiales**

Sans objet pour l'analyse modale.

Date: 30/07/2015 Page: 3/6

Titre : SDLL15 - Poutre élancée, encastrée-libre, avec mas[...]

Responsable : Albert ALARCON Clé : V2.02.015 Révision : 13723

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est celle donnée dans la fiche SDLL15/89 du guide VPCS qui présente la méthode de calcul de la façon suivante :

Le problème avec masse non excentrée conduit à des modes découplés :

- traction-compression (effet de la masse seule),
- torsion (effet de l'inertie autour de la fibre neutre),
- flexion dans les plans x, y et x, z (effet de la masse).

Les différentes fréquences propres sont déterminées avec un modèle par éléments finis de poutre d'Euler (poutre élancée).

Pour le premier mode avec une masse excentrée, une méthode de Rayleigh donne la formule approchée :

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{3 E I_z}{L^3 (m_c + 0.24 M)}}$$

avec M = masse totale de la poutre.

Lorsque la masse est excentrée, les modes de flexion (x, z) et de torsion sont couplés, ainsi que les modes de flexion (x, y) et de traction-compression.

Pour le mode propre, les composantes au point B permettent de calculer les composantes au centre de gravité de la masse (point C) par :

$$\begin{bmatrix} u_c \\ v_c \\ w_c \end{bmatrix} = \begin{bmatrix} u_B \\ v_B \\ w_B \end{bmatrix} + \begin{bmatrix} 0 & z_c & -y_c \\ -z_c & 0 & +x_c \\ +y_c & -x_c & 0 \end{bmatrix} \begin{bmatrix} \theta_{xB} \\ \theta_{yB} \\ \theta_{zB} \end{bmatrix}$$

$$u_c = u_B = -\theta_{zB}$$

Pour ce test :

$$v_c = v_B$$

$$w_c = w_B + \theta_{xB}$$

2.2 Résultats de référence

Cas 1 : 10 premiers modes propres. Cas 2 : 8 premiers modes propres.

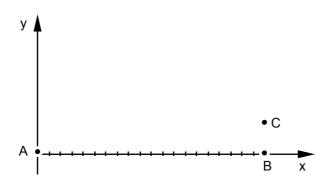
2.3 Incertitude sur la solution

Problème 1: f1 solution analytique

autres fréquences ±1%

Problème 2: $\pm 1\%$

2.4 Références bibliographiques


1) Groupe de travail Analyse Dynamique. Commission de Validation des Progiciels de Calcul de Structures. Société Française des Mécaniens. (1988)

Date: 30/07/2015 Page: 4/6 Responsable: Albert ALARCON Clé: V2.02.015 Révision: 13723

Modélisation A 3

3.1 Caractéristiques de la modélisation

Élément de poutre POU D E et élément discret DIS TR

Découpage : poutre AB : 20 mailles SEG2.

Conditions limites:

au nœud extrémité A

DDL IMPO: (NOEUD: A DX: 0., DY: 0., DZ: 0., DRX: 0., DRY: 0., DRZ: 0.)

Masse nodale en B avec une excentricité

ev = 0. Cas 1

ev = 1. Cas 2

Noms des nœuds : **Points** A = N100B = N200

Caractéristiques du maillage 3.2

Nombre de nœuds : Nombre de mailles et types : **20** SEG2

Date: 30/07/2015 Page: 5/6 Responsable: Albert ALARCON Clé: V2.02.015 Révision: 13723

3.3 Grandeurs testées et résultats

Cas	Nature du mode	Fréquence Référence	Hz	% différence
	propre		Aster	
	flexion 1,2	1.65	1.6554	0.33
	flexion 3,4	16.07	16.0712	0.
CAS 1	flexion 5,6	50.02	50.0240	0.
	traction 1	76.47	76.4727	0.
yc=0.	torsion 1	80.47	80.4688	0.
	flexion 7,8	103.20	103.20444	0.
	$f_z + t_o$ 1	1.636	1.6363	0.
	$f_y + t_r$ 2	1.642	1.6416	0.
CAS 2	$f_{v} + t_{r}$ 3	13.46	13.4551	0.
	$f_z + t_o$ 4	13.59	13.5919	0.
yc=1.	$f_z + t_o$ 5	28.90	28.8972	0.
	$f_{v}+t_{r}$ 6	31.96	31.9594	0.
	$f_z + t_o$ 7	61.61	61.6091	0.
	$f_y + t_r$ 8	63.93	63.9289	0.
Mode	θ_{xB}	0.03	3.039 10 ⁻²	1.321
1	w_C/w_B	1.030	1.030	0.
2	u_C/v_B	-0.148	-0.148	0.
3	u_C/v_B	-2.882	-2.880	0.07
4	w_C/w_B	-0.922	-0.923	0.108
5	$ heta_{xB}$	-1.922	-1.92268	0.036

avec:

 $f_z + t_o = flexion x$, z + torsion $f_v + t_r = flexion x$, y + traction

3.4 Remarques

Calculs effectués par :

CALC MODES

OPTION = 'PLUS_PETITE' CALC_FREQ=_F (NMAX_FREQ = n) Cas 1 : n=10, Cas 2 : n=8 SOLVEUR_MODAL=_F (METHODE = 'TRI_DIAG')

Dans le test, on ne peut vérifier les valeurs des rapports $\frac{u_C}{v_B}$ pour les modes 2 et 3 (sauf

manuellement). En ce qui concerne les valeurs de $\frac{w_C}{w_R}$, la technique est la suivante : si on impose

 $w_{\scriptscriptstyle B} = 1$ (commande <code>NORM_MODE</code>), on a alors $\frac{w_{\scriptscriptstyle C}}{w_{\scriptscriptstyle B}} = 1 + \theta_{\scriptscriptstyle xB}$ et on peut faire des vérifications sur les valeurs de θ_{xB} .

Contenu du fichier résultats :

Cas 1 : 11 premières fréquences propres, vecteurs propres et paramètres modaux.

Cas 2 : 9 premières fréquences propres, vecteurs propres et paramètres modaux.

Date: 30/07/2015 Page: 6/6 Responsable: Albert ALARCON Clé: V2.02.015 Révision: 13723

Synthèse des résultats 4

La modélisation de la masse excentrée donne des résultats exacts pour les 8 fréquences de référence.

La précision des modes propres est de l'ordre de 0.1% jusqu'au mode 4.