Révision: 13342

Date: 09/07/2015 Page: 1/13

Clé: V2.02.011

Titre: SDLL11 - Anneau circulaire mince libre-libre

Responsable : Albert ALARCON

SDLL11 - Anneau circulaire mince libre-libre

Résumé:

Ce cas-test permet de tester les fréquences et les modes de vibration d'un anneau circulaire en libre-libre.

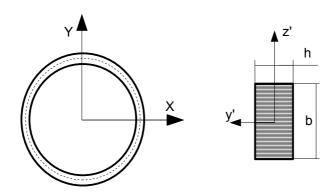
Huit modélisations sont effectuées, pour chacune d'entre elle on précise la modélisation et le type de maille testées.

La méthode de recherche des fréquences propres utilisée est la méthode de SORENSEN pour les modélisations A, B, C, D, E, F, G, et la méthode de LANCZOS pour la modélisation I.

•Modélisations 3D

•Modélisation A: maille HEXA20 •Modélisation B: maille HEXA8 •Modélisation C: maille PENTA15 •Modélisation D: maille TETRA10

•Modélisation POU C T


•Modélisation E : maille SEG2

•Modélisations 2D

Date: 09/07/2015 Page: 2/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Problème de référence

1.1 Géométrie

Dimension en (m)

•Rayon de courbure moyen R=0.1m h = 0.005 m·Epaisseur:

b=0.010 m (plan perpendiculaire) ·Largeur:

 $A = 5 \times 10^{-5} \, m^2$ •Aire:

 $I_z = 1.042 \times 10^{-10} \, m^4 \, I_y = 4.167 \times 10^{-10} \, m^4$ •Moment d'inertie :

 $J = 2.859 \times 10^{-10} m^4$ •Moment de torsion:

1.2 Propriétés du matériau

•Elastique

• $E = 7.2 \times 10^{10} Pa$ Module d'Young

• v = 0.3Coefficient de poisson

• $\rho = 2700 \, kg/m^3$ Masse volumique

Conditions aux limites et chargements

•Déplacements : tous les points de l'anneau sont libres

•Chargement : aucun

Date: 09/07/2015 Page: 3/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Modes de vibration dans le plan

Pour ces modes de vibration, l'équation de flexion des poutres courbes de V. Boussinesq (1883), sans extension de la fibre neutre conduit à :

$$f_i = \frac{1}{2\pi} \sqrt{\frac{(i^2(i^2-1)^2)}{i^2+1} \times \frac{EI_Z}{\rho AR^4}}$$
 $i = 0,1,2,...$

La solution de référence est établie pour des arcs minces tels que $\alpha R \ge 100 \sqrt{(\frac{I_z}{4})}$ avec α , angle au centre en radians.

•Modes de vibration hors plan

Pour les modes de vibrations transverses avec section rectangulaire, la solution a été établie à partir du résultats de deux codes de calculs, utilisant des formulations différentes.

(coord	Modes propres dans le plan (coordonnées polaires (i, θ))			lodes propres hors plan
Symétriques		Antisymétriques		
$u_{i}^{'}=i\cos(i\theta)$		$u_{i}^{'}=i\sin\left(i\theta\right)$		
$v_i' = \sin(i\theta)$		$v_{i}^{'} = -\cos(i\theta)$ $\theta_{i}^{'} = -\frac{1 - i^{2}}{R}\cos(i\theta)$	i=0	
	i=0	θ	i=1	
	Rotation d'ensemble $i=1$ translation		i=2	
÷	d'ensemble $i=2$		i=3	
	i=3		i=4	
$\theta_{i}^{'} = -\frac{1-i^{2}}{R}\sin(i\theta)$				

2.2 Grandeur de référence

Date: 09/07/2015 Page: 4/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

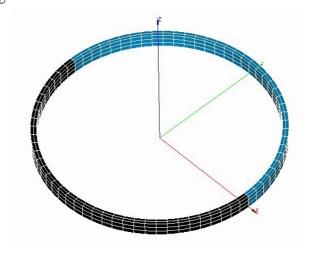
• FREQ : fréquence

2.3 Grandeur et résultat de référence

	Composante	Nature du mode propre		Référence	
	'	i	ordre	(Hz)	
		2	4,5	318.36	
Modes dans le plan	FREQ	3	6,7	900.46	
		4	8,9	1726.55	
		5	10,11	2792.21	
Modes transverses	FREQ	2	4,5	511.	
		3	6,7	1590.	
		4	8,9	3184.	

Références bibliographiques 2.4

[1] Guide de Validation des Progiciels de Calculs des Structures: SFM, AFNOR technique, ISBN: 2-12-486611-7


Responsable : Albert ALARCON

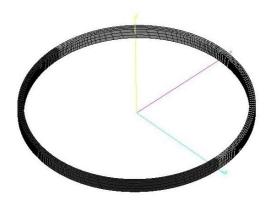
Date: 09/07/2015 Page: 5/13 Clé: V2.02.011 Révision: 13342

3 Modélisation A

3.1 Caractéristiques de la modélisation A

•Modélisation 3D

Nombre de nœuds 2952


Nombre de mailles 432 HEXA20

	Composante	Nature du mode propre		Référence	Tolérance
		i	ordre	(Hz)	(%)
		2	4,5	318.36	0.1
Modes dans le plan	FREQ	3	6,7	900.46	0.3
		4	8,9	1726.55	0.5
		5	10,11	2792.21	0.8
Modes transverses	FREQ	2	4,5	511.	0.7
		3	6,7	1590.	1.4
		4	8,9	3184.	2.3

Date: 09/07/2015 Page: 6/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

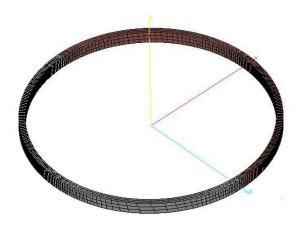
Modélisation B 4

Caractéristiques de la modélisation B 4.1

Modélisation 3D:

Nombre de nœuds 12800

Nombre de mailles HEXA8 7200


	Composante	Nature du mode propre		Référence	Tolérance
	'	i ordre (Hz)	(%)		
Modes dans le plan	FREQ	2	4,5	318.36	1.8
		3	6,7	900.46	1.6
		4	8,9	1726.55	1.35
		5	10,11	2792.21	1.
Modes transverses	FREQ	2	4,5	511.	1.7
		3	6,7	1590.	0.4
		4	8,9	3184.	0.8

Responsable : Albert ALARCON

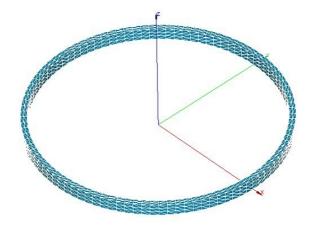
Date: 09/07/2015 Page: 7/13

5 Modélisation C

5.1 Caractéristiques de la modélisation C

Modélisation 3D:

Nombre de nœuds 3528


Nombre de mailles 864 PENTA15

	Composante	Nature du mode propre		Référence	Tolérance
	•	·	ordre	(Hz)	(%)
	FREQ	2	4,5	318.36	0.1
Modes dans le plan		3	6,7	900.46	0.2
		4	8,9	1726.55	0.35
		5	10,11	2792.21	0.6
Modes transverses	FREQ	2	4,5	511.	0.7
		3	6,7	1590.	1.4
		4	8,9	3184.	2.3

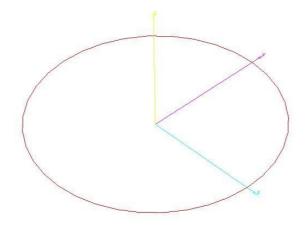
Date: 09/07/2015 Page: 8/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Modélisation D 6

6.1 Caractéristiques de la modélisation D

Modélisation 3D:

Nombre de nœuds 5824


Nombre de mailles 2728 TETRA10

	Composante	Nature du mode propre		Référence	Tolérance
	•	i	ordre	(Hz)	(%)
Modes dans le plan	FREQ	2	4,5	318.36	0.1
		3	6,7	900.46	0.2
		4	8,9	1726.55	0.4
		5	10,11	2792.21	0.7
Modes transverses	FREQ	2	4,5	511.	0.25
		3	6,7	1590.	1.1
		4	8,9	3184.	2.0

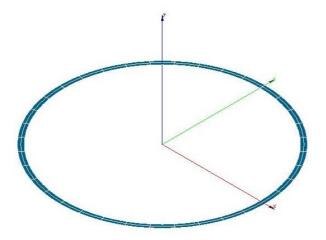
Date: 09/07/2015 Page: 9/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Modélisation E

Caractéristiques de la modélisation E 7.1

Modélisation POU_C_T :

Nombre de nœuds 36


Nombre de mailles 36 SEG2

	Composante		ure du e propre	Référence	Tolérance	
	'	i	ordre	(Hz)	(%)	
		2	4,5	318.36	0.25	
Modes dans le plan	FREQ	3	6,7	900.46	0.6	
		4	8,9	1726.55	1.1	
		5	10,11	2792.21	1.7	
Modes transverses	FREQ	2	4,5	511.	0.85	
		3	6,7	1590.	1.5	
		4	8,9	3184.	2.4	

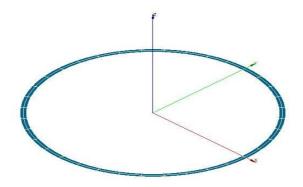
Date: 09/07/2015 Page: 10/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Modélisation F 8

Caractéristiques de la modélisation F 8.1

Modélisation D PLAN :

Nombre de nœuds 288


Nombre de mailles 72 QUAD8

	Composante		ure du propre	Référence	Tolérance (%)
		i	ordre	(Hz)	
Modes dans le plan	FREQ	2	4,5	318.36	1.4
		3	6,7	900.46	1.6
		4	8,9	1726.55	1.7
		5	10,11	2792.21	2.0

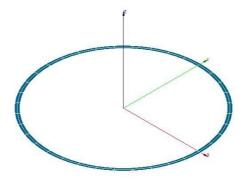
Date: 09/07/2015 Page: 11/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Modélisation G

Caractéristiques de la modélisation G 9.1

 $Modelisation C_PLAN$:

Nombre de nœuds 293


Nombre de mailles 72 QUAD8

	Composante	l	ure du e propre	Référence	Tolérance (%)
		i	ordre	(Hz)	
Modes dans le plan	FREQ	2	4,5	318.36	1.4
		3	6,7	900.46	1.6
		4	8,9	1726.55	1.7
		5	10,11	2792.21	2.0

Date: 09/07/2015 Page: 12/13 Responsable: Albert ALARCON Clé: V2.02.011 Révision: 13342

Modélisation I 10

10.1 Caractéristiques de la modélisation I

 $Modelisation C_PLAN$:

Nombre de nœuds 293

Nombre de mailles 72 QUAD8

	Composante	_	ture du e propre	Référence	Tolérance
	,	i	ordre	(Hz)	(%)
Modes dans le plan	FREQ	2	4,5	318.36	1.4
		3	6,7	900.46	1.6
		4	8,9	1726.55	1.7
		5	10,11	2792.21	2.0

Version default

Titre : SDLL11 - Anneau circulaire mince libre-libre

Responsable : Albert ALARCON

Date : 09/07/2015 Page : 13/13 Clé : V2.02.011 Révision : 13342

11 Synthèse des résultats

Les résultats obtenus sont satisfaisants.