Révision: 13710

Date: 28/07/2015 Page: 1/10

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON Clé : V2.01.313

SDLD313 - Système masse ressort à 2 degrés de liberté avec amortissement hystérétique

Résumé:

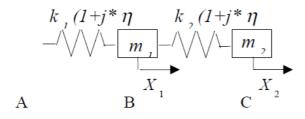
Ce problème unidirectionnel consiste à effectuer une analyse harmonique d'une structure mécanique composée d'un ensemble de masses-ressorts avec amortissement hystérétique et soumise à une excitation sinusoïdale. Ce test de mécanique des structures correspond à une analyse dynamique d'un modèle discret ayant un comportement linéaire. Il comprend trois modélisations.

Par l'intermédiaire de la modélisation A, on teste les éléments discrets en translation (masse, ressort), les options AMOR_HYST de AFFE_CARA_ELEM.

Par l'intermédiaire de la modélisation B, on teste les éléments de poutre (POU_D_T), les options AMOR_HYST de DEFI MATERIAU,

Par l'intermédiaire de la modélisation C, on teste le calcul modal (CALC MODES) complexe.

Les résultats obtenus pour les deux premières modélisations (champ de déplacement pour différentes fréquences d'excitation) sont en bon accord avec les résultats du guide VPCS. Les résultats obtenus pour la troisième modélisation sont en bon accord avec les résultats semi-analytiques.


Titre: SDLD313 - Système masse ressort à 2 degrés de libe[...]

Date: 28/07/2015 Page: 2/10 Responsable: Albert ALARCON Clé: V2.01.313 Révision: 13710

Problème de référence

1.1 Géométrie

Nous considérons le système représenté par le schéma ci-dessous :

Masses ponctuelles: m_1 et m_2

Raideurs de liaison : k_1 et k_2

Amortissement hystérétique : η_1 et η_2

1.2 Propriétés du matériau

Ressort de translation élastique linéaire $K_1 = 28000 \, N/m$

 $K_2 = 28000 \, N/m$

Masse ponctuelle $M_1 = 10 kg$

 $M_2 = 5 kg$

Amortissement hystérétique $\eta_1 = 0.1$

 $\eta_2 = 0.0$

1.3 **Conditions aux limites et chargements**

Conditions aux limites :

Points A, B, C encastrés en DY et DZ

Points A: encastré (DX=0).

Chargement : Force concentrée sinusoïdale de fréquence variable au point C

$$F_{x_4} = F_0 \sin \Omega t$$

$$\Omega = 2\pi f \quad 0 Hz \le f \le 21.0543 Hz$$

$$F_0 = constante = 100N$$

Conditions initiales 1.4

Révision: 13710

Date: 28/07/2015 Page: 3/10

Clé: V2.01.313

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON

Sans objet pour l'étude du régime harmonique permanent.

Date: 28/07/2015 Page: 4/10

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON Clé : V2.01.313 Révision : 13710

2 Solution de référence

2.1 Méthode de calcul

Le système d'équations différentielles du second ordre couplées est de la forme :

La solution ω à une excitation harmonique $\mathbf{F} = \mathbf{F_0} e^{j\omega t} (j^2 = -1)$ est de la forme $u = u_0 e^{j\omega t}$, ce qui conduit à : $(\mathbf{K} - \mathbf{M} \omega^2) u_0 = \mathbf{F_0}$

Ce système est résolu pour tout $\,\omega\,$.

2.2 Grandeurs et résultats de référence

Déplacement selon $\,x\,$ du point $\,C\,$ pour certaines fréquences. Fréquences propres et amortissement réduits.

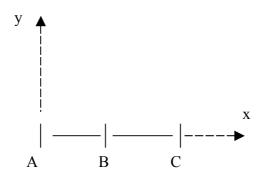
2.3 Incertitudes sur la solution

Solution semi-analytique.

2.4 Références bibliographiques

[1] J. PIRANDA: Notice d'utilisation du logiciel d'analyse modale MODAN - Version 0.2 (1990). Laboratoire de Mécanique Appliquée - Université de Franche Comté - Besançon (France).

Date: 28/07/2015 Page: 5/10


Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON Clé : V2.01.313 Révision : 13710

3 Modélisation A

3.1 Caractéristiques de la modélisation

Élément discret de rigidité en translation

Caractéristiques des éléments

DISCRET: avec masses nodales M_T_D_N
of matrices do rigidité

et matrices de rigidité K_T_D_L

Conditions aux limites :

en tous les nœuds DDL_IMPO: (TOUT:'OUI' DY: 0. , DZ: 0.) au nœud extrémité A (GROUP NO: A DX: 0.)

Noms des nœuds :

Point A = NI

Point B = N2

Point C = N3

3.2 Caractéristiques du maillage

Nombre de nœuds : 3

Nombre de mailles et types : 2 SEG2

3.3 Grandeurs testées et résultats

Parties réelle et imaginaire de la composante $\,D\!X\,$ du déplacement du point $\,C\,$.

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON

Date : 28/07/2015 Page : 6/10
Clé : V2.01.313 Révision : 13710

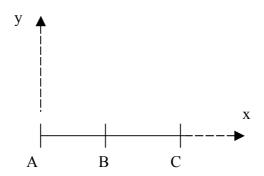
Fréquence	Référence	Aster	% Différence
0.00	7.1075E-03	7.1074964639321E-03	1.08E-04
	-3.5360E-04	-3.5360678925035E-04	
3.36870E+00	9.388216E-03	9.3882649899583E-03	5.31E-04
	-7.31196E-04	-7.3120610001073E-04	
6.48480E+00	-5.0269E-03	-5.0349198344062E-03	0.012
	-7.07103E-02	-7.0708581052416E-02	
8.00060E+00	-9.54931E-03	-9.5490053525137E-03	0.003
	-2.2154E-03	-2.2153458282190E-03	
1.18746E+01	-4.23259E-05	-4.2266734408325E-05	0.016
	-3.57193E-04	-3.5719325443817E-04	
1.34747E+01	2.35524E-03	2.3552527130123E-03	5.34E-04
	-5.01765E-04	-5.0176685846530E-04	
1.55802E+01	-1.6395374E-02	-1.6420641488151E-02	0.039
	-6.871471E-02	-6.8704047854161E-02	
2.10543E+01	-1.88977E-03	-1.8897660707219E-03	2.08E-04
	-5.53314E-06	-5.5328629109043E-06	

3.4 Remarques

Contenu du fichier résultats :

Les valeurs du déplacement de la composante $\,D\!X$ du point $\,C\,$ pour toutes les fréquences de $\,0\,$ à $\,2.10543\mathrm{E}+01\mathrm{Hz}\,$ par pas de $\,3.3687\,$.

Date: 28/07/2015 Page: 7/10


Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON Clé : V2.01.313 Révision : 13710

4 Modélisation B

4.1 Caractéristiques de la modélisation

Élément continu de type poutre en traction

Caractéristiques des éléments

DISCRET: masses nodales M_T_D_N
POUTRE: matrices de rigidité POU_D_T

Conditions aux limites:

en tous les nœuds DDL_IMPO: (TOUT:'OUI' DY: 0. , DZ: 0.)

au nœud extrémité A (GROUP NO: A DX: 0.)

Noms des nœuds :

Point A = N1

Point B = N2

Point C = N3

4.2 Caractéristiques du maillage

Nombre de nœuds : 3

Nombre de mailles et types : 2 SEG2

4.3 Grandeurs testées et résultats

Parties réelle et imaginaire de la composante DX du déplacement du point C.

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable : Albert ALARCON

Date : 28/07/2015 Page : 8/10
Clé : V2.01.313 Révision : 13710

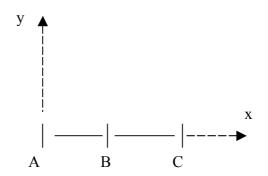
Fréquence	Référence	Aster	% Différence
0.00	7.1075E-03	7.1074964639321E-03	1.08E-04
	-3.5360E-04	-3.5360678925035E-04	
3.36870E+00	9.388216E-03	9.3882649899583E-03	5.31E-04
	-7.31196E-04	-7.3120610001073E-04	
6.48480E+00	-5.0269E-03	-5.0349198344064E-03	0.012
	-7.07103E-02	-7.0708581052416E-02	
8.00060E+00	-9.54931E-03	-9.5490053525137E-03	0.003
	-2.2154E-03	-2.2153458282190E-03	
1.18746E+01	-4.23259E-05	-4.2266734408325E-05	0.016
	-3.57193E-04	-3.5719325443817E-04	
1.34747E+01	2.35524E-03	2.3552527130123E-03	5.34E-04
	-5.01765E-04	-5.0176685846530E-04	
1.55802E+01	-1.6395374E-02	-1.6420641488152E-02	0.039
	-6.871471E-02	-6.8704047854161E-02	
2.10543E+01	-1.88977E-03	-1.8897660707219E-03	2.08E-04
	-5.53314E-06	-5.5328629109043E-06	

4.4 Remarques

Contenu du fichier résultats :

Les valeurs du déplacement de la composante $\,D\!X$ du point $\,C\,$ pour toutes les fréquences de $\,0\,$ à $\,2.10543\mathrm{E}+01\mathrm{Hz}\,$ par pas de $\,3.3687\,$.

Date: 28/07/2015 Page: 9/10


Titre: SDLD313 - Système masse ressort à 2 degrés de libe[...]

Responsable: Albert ALARCON Clé: V2.01.313 Révision: 13710

Modélisation C 5

5.1 Caractéristiques de la modélisation

Élément discret de rigidité en translation

Caractéristiques des éléments

DISCRET : avec masses nodales

M T D Net matrices de rigidité K_T_D_L

Conditions aux limites:

en tous les nœuds DDL IMPO: (TOUT:'OUI' DY: 0. , DZ: 0.)

(GROUP NO: A DX: 0.) au nœud extrémité A

Noms des nœuds :

A = N1Point A = N1Point B = N2B = N2Point C = N3C = N3

Caractéristiques du maillage 5.2

Nombre de nœuds : 3

Nombre de mailles et types : 2 SEG2

5.3 Grandeurs testées et résultats

Fréquences propres et amortissements réduits.

Fréquences propres :

Numéro d'ordre	Référence	Aster	% Différence
1	6.4537	6.44568	-0.124
2	15.5806	1.55612	-0.124

Amortissements réduits :

Numéro d'ordre	Référence	Aster	% Différence
1	0.05	0.05	-1.39E-14
2	0.05	0.05	2.78E-14

Version default

Titre : SDLD313 - Système masse ressort à 2 degrés de libe[...] Date: 28/07/2015 Page: 10/10 Responsable: Albert ALARCON

Clé: V2.01.313 Révision: 13710

Synthèse des résultats 6

Les résultats obtenus sont excellents.