Révision : 9914

Date: 19/10/2012 Page: 1/7

Clé: V1.04.116

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Responsable : Nicolas SELLENET

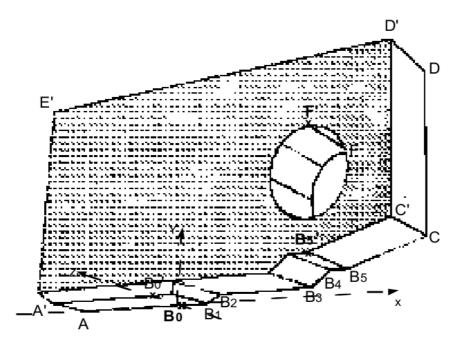
PETSC01 - Validation du solveur PETSc en élasticité linéaire 3D

Résumé :

Ce cas-test permet de valider le solveur PETSC en élasticité linéaire 3D sous différentes configurations :

- Commandes éclatées ou opérateurs globaux
- Dualisation et élimination des conditions aux limites (AFFE CHAR CINE/MECA)
- Utilisation de PETSC avec la méthode NEWTON_KRYLOV dans l'opérateur de dynamique nonlinéaire

Révision: 9914


Date: 19/10/2012 Page: 2/7

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Responsable: Nicolas SELLENET Clé: V1.04.116

1 Problème de référence

1.1 Géométrie

La géométrie ne représente qu'un quart de l'éprouvette CTJ25 :

plans de symétrie : $(x B_0 y)$ et $(x B_0 z)$

Épaisseur : DD' = 12.5 mm

Face1: (A, B0, B1, B2, B3, B4, B5, C, D, E)

Face2: (A, B0, B0', A')

Coordonnées des points (mm) :

	min	max	B0	F'	B5'
х	-20.	42.5	0.	30.	30.
у	0.	30.	0.	20.25	3.5
Z	0.	12.5	0.	12.5	12.5

1.2 Propriétés matériaux

Les propriétés élastiques du matériau sont les suivantes :

• Module d'Young : $E = 2.02702710^{11} Pa$

•Coefficient de Poisson : v = 0.3

1.3 Conditions aux limites et chargements

Tous les nœuds de la $\mathit{face1}$: $\mathit{DZ} = 0$

Tous les nœuds de la face2: DY=0

Tous les nœuds de la ligne FF': DX=0 DY=0.01

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Date: 19/10/2012 Page: 3/7 Responsable: Nicolas SELLENET Clé: V1.04.116 Révision: 9914

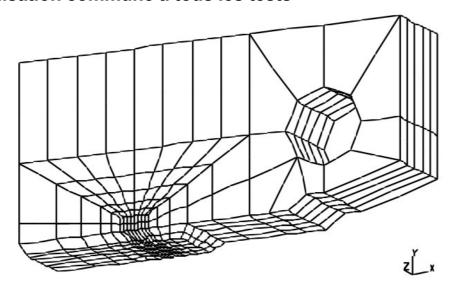
Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est celle obtenue sur le même maillage avec le code PERMAS, calculs réalisés en 1997.

2.2 Résultats de référence et grandeurs testées

l andlingtion	Référence	Précision	
Localisation	(<i>mm</i>)		
Point F' DY	1. 10 ⁻²	1.5E-4	
DZ	1.0296 10 -4	1.5E-4	
Point B5' DX	4.3006 10 ⁻³	1.5E-4	
DY	9.2890 10 ⁻³	1.5E-4	
DZ	-2.9173 10 ⁻⁵	1.5E-4	


Date: 19/10/2012 Page: 4/7

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Responsable : Nicolas SELLENET Clé : V1.04.116 Révision : 9914

3 Modélisation de référence

3.1 Modélisation commune à tous les tests

Maillage: Nombre de nœuds: 3323 Nombre de mailles: 630 HEXA20

Découpage : Face1 (A, B1, ..., B5, C, D, E) 428 nœuds

Face2 (A, B0, B0', A') 198 nœuds

Segment FF' 11 nœuds

Nom des nœuds : Point F' = NO2958 Point B5' = NO2974

Conditions aux limites:

en tous les nœuds de la Face1 (GROUP_NO='Grno1', DZ=0) en tous les nœuds de la Face2 (GROUP_NO='Grno8', DY=0)

en tous les nœuds du segment FF' (GROUP_NO='Grno7', DX=0, DY=0.01)

Date: 19/10/2012 Page: 5/7

Titre : PETSC01 - Validation du solveur PETSc en élasticit[...]

Responsable : Nicolas SELLENET Clé : V1.04.116 Révision : 9914

4 Modélisation A

Opérateur de résolution MECA STATIQUE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithmes CR et CG (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

5 Modélisation B

Opérateur de résolution STAT NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

6 Modélisation C

Commandes éclatées CALC MATR ELEM, FACTORISER et RESOUDRE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et CALC CHAR CINE).

Solveur PETSC, algorithme CR (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

7 Modélisation D

Opérateur de résolution MECA STATIQUE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT_SP de factorisation simple précision et sans renumérotation).

8 Modélisation E

Opérateur de résolution STAT NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT_SP de factorisation simple précision et sans renumérotation).

9 Modélisation F

Commandes éclatées CALC MATR ELEM, FACTORISER et RESOUDRE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et CALC CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT_SP de factorisation simple précision et sans renumérotation).

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Date: 19/10/2012 Page: 6/7 Responsable: Nicolas SELLENET Clé: V1.04.116 Révision: 9914

10 Modélisation G

Opérateur de résolution MECA STATIQUE.

Élimination des conditions aux limites cinématiques (AFFE CHAR CINE).

Solveur PETSC, algorithmes CR et GCR (5 résolutions sans renumérotation avec respectivement préconditionnement JACOBI, pré-conditionnement SOR, SANS pré-conditionnement, préconditionnement ML et pré-conditionnement BOOMER).

11 Modélisation H

Opérateur de résolution DYNA_NON_LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme GMRES (pré-conditionnement LDLT SP par factorisation simple précision).

12 Modélisation I

Opérateur de résolution DYNA NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme GMRES (pré-conditionnement LDLT SP par factorisation simple précision). Utilisation de la méthode NEWTON KRYLOV à la place de la méthode NEWTON.

Titre: PETSC01 - Validation du solveur PETSc en élasticit[...]

Date: 19/10/2012 Page: 7/7 Responsable: Nicolas SELLENET Clé: V1.04.116 Révision: 9914

Synthèse des résultats 13

Ce cas-test montre le bon fonctionnement du solveur PETSC dans les différents cas étudiés.

Version

default