Révision: 2939

Date: 25/03/2010 Page: 1/11

Clé: V1.01.262

Titre : PERF009 - Calcul élastique de la pompe RIS

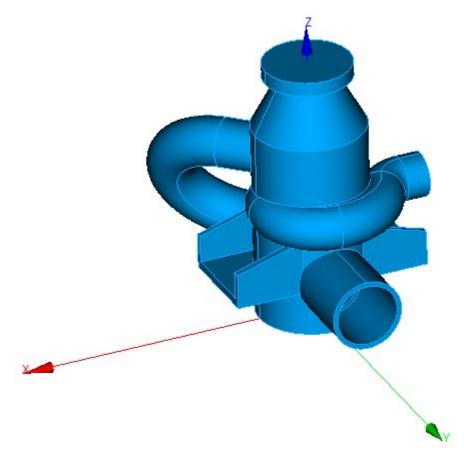
Responsable : Nicolas SELLENET

PERF009 – Calcul élastique de la pompe RIS

Résumé:

L'objectif de ce cas-test est de mesurer les performances d'un calcul élastique d'une pompe RIS soumise à une pression intérieure constante.

Ce cas test est décliné en 7 modélisations qui sont identiques. Les différences sont liées au changement de solveur et au nombre de processeurs,


- 1) Modélisation A : solveur MULT_FRONT sur 1 processeur,
- 2) Modélisation B : solveur MULT_FRONT sur 2 processeurs,
- 3) Modélisation C : solveur MULT_FRONT sur 4 processeurs,
- 4) Modélisation D : solveur MUMPS sur 2 processeurs,
- 5) Modélisation E : solveur MUMPS sur 4 processeurs,
- 6) Modélisation F: solveur MUMPS sur 8 processeurs,
- 7) Modélisation G: solveur MUMPS sur 16 processeurs,

Date: 25/03/2010 Page: 2/11 Responsable: Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Problème de référence

1.1 Géométrie

La géométrie de la pompe est la suivante :

1.2 Propriétés du matériau

- $E = 2.10^5 \text{ MPa}$
- v = 0.3

Conditions aux limites et chargements 1.3

Déplacement imposé :

Face inférieure : DX = DY = DZ = 0.

Pression intérieure imposée :

 $P = 100 \, \text{MPa}$

Version default

Titre : PERF009 - Calcul élastique de la pompe RIS

Date : 25/03/2010 Page : 3/11

Responsable : Nicolas SELLENET

Clé : V1.01.262 Révision : 2939

2 Solution de référence

2.1 Méthode de calcul

Le résultat de référence a été obtenu en calculant la moyenne des déplacements dans toutes les directions_sur la face supérieure de la pompe avec le solveur 'MUMPS'.

2.2 Incertitudes

Solution numérique (non-régression).

Date: 25/03/2010 Page: 4/11 Responsable: Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation A 3

3.1 Caractéristiques de la modélisation A

Nombre de processeur : 1

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 TRIA6 77 544 TETRA10 137 688

3.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MULT FRONT

3.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

		Mémoire (Mo)			Temps exécution (MECA_STATIQUE)			
Machine Version			Nombre	(sec)				
	Allouée L	Utilisée	DDL	USER	SYSTEM	USER +SYS	ELAPSE D	
Linux 64 bits (ia64) "Bull"	10.1.12	4 000	3 975	803 352	278.72	17.79	296.51	297.15

Date: 25/03/2010 Page: 5/11 Responsable : Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation B 4

4.1 Caractéristiques de la modélisation B

Nombre de processeur : 2

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 77 544 TRIA6 TETRA10 137 688

4.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MULT FRONT

4.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

Machine Version		Mémoire (Mo)			Temps exécution (MECA STATIQUE)			
	Version			Nombre	re (sec)			
	Allouée Utilisé	Utilisée	DDL	USER	SYSTEM	USER +SYS	ELAPSE D	
Linux 64 bits (ia64) "Bull"	10.1.12	4 000	3 975	803 352	300.73	16.79	317.52	232.68

Date: 25/03/2010 Page: 6/11 Responsable: Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation C 5

5.1 Caractéristiques de la modélisation C

Nombre de processeur : 3

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 TRIA6 77 544 TETRA10 137 688

5.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MULT FRONT

5.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

Machine Version		Mémoire (Mo)			Temps exécution (MECA STATIQUE)			
	Version	Vorsion		Nombre	(sec)			
	Allouée	Utilisée	DDL	USER	SYSTEM	USER +SYS	ELAPSE D	
Linux 64 bits (ia64) "Bull"	10.1.12	4 000	3 975	803 352	388.16	17.25	405.41	212.47

Date: 25/03/2010 Page: 7/11 Responsable : Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation D 6

6.1 Caractéristiques de la modélisation D

Nombre de processeur : 2

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 77 544 TRIA6 TETRA10 137 688

6.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MUMPS

6.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

	Mémoire (Mo)			Temps exécution (MECA_STATIQUE)						
Machine	Version	,ion N	Vorsion Nombre				(sec)			
Iviaciliile	VEISIOII	Allouée	Utilisée	DDL	USER	SYSTEM	USER	ELAPSE		
					USEK	SISIEW	+SYS	D		
Linux 64 bits (ia64) "Bull"	10.1.15	2 200	888	803 352	149.31	7.11	156.42	166.46		

Date: 25/03/2010 Page: 8/11 Responsable: Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation E

7.1 Caractéristiques de la modélisation E

Nombre de processeur : 4

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 TRIA6 77 544 TETRA10 137 688

7.2 Fonctionnalités testées

Commande	Option	
AFFE_MODELE	MODELISATION	3D
AFFE_CHAR_MECA	FACE_IMPO	
	PRES_REP	
MECA_STATIQUE		
SOLVEUR	MUMPS	

7.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

		Mémoire (Mo)			Temps exécution (MECA_STATIQUE)				
Machine Version	Version	Vorcion		Nombre	(sec)				
	Allouée Ut	Utilisée	DDL	USER	SER SYSTEM		ELAPSE		
						+SYS	D		
Linux 64 bits (ia64) "Bull"	10.1.15	2 200	790	803 352	120.69	6.32	127.01	129.11	

Titre : PERF009 - Calcul élastique de la pompe RIS Date : 25/03/2010 Page : 9/11
Responsable : Nicolas SELLENET Clé : V1.01.262 Révision : 2939

8 Modélisation F

8.1 Caractéristiques de la modélisation F

Nombre de processeur : 8

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit :

SEG3 3 600 TRIA6 77 544 TETRA10 137 688

8.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MUMPS

8.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)		
DEPL MOY DX	3.83679	3.83679086	2.2E-05		
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05		
DEPL MOY DZ	2.87533	2.8753262	1.3E-04		

		Mémoi	re (Mo)		Temps exécution (MECA_STATIQUE)				
Machine Version	Vorcion		Utilisée	Nombre DDL	ore (sec)				
	VEISIOII	Allouée			USER	SYSTEM	USER	ELAPSE	
				USLIN	SISILIVI	+SYS	D		
Linux 64 bits (ia64) "Bull"	10.1.15	2 200	717	803 352	83.21	1.88	85.09	85.15	

Date: 25/03/2010 Page: 10/11 Responsable: Nicolas SELLENET Clé: V1.01.262 Révision: 2939

Modélisation G 9

9.1 Caractéristiques de la modélisation G

Nombre de processeur : 16

Modélisation 3D:

Nombre de nœuds 261 520

Nombre de mailles 218 832 Soit:

> SEG3 3 600 TRIA6 77 544 TETRA10 137 688

9.2 Fonctionnalités testées

Commande	Option
AFFE_MODELE	MODELISATION 3D
AFFE_CHAR_MECA	FACE_IMPO
	PRES_REP
MECA_STATIQUE	
SOLVEUR	MIJMPS

9.3 Résultats

Grandeur	Référence	Code_Aster	Erreur relative (%)
DEPL MOY DX	3.83679	3.83679086	2.2E-05
DEPL MOY DY	-7.41447	-7.4144716	2.2E-05
DEPL MOY DZ	2.87533	2.8753262	1.3E-04

	Mémoire (Mo)			Temps exécution (MECA_STATIQUE)					
Machine Version	Version	Jorgian		Nombre	(sec)				
	Allouée	Utilisée	DDL	USER	R SYSTEM	USER	ELAPSE		
				OSLIN	SISILM	+SYS	D		
Linux 64 bits (ia64) "Bull"	10.1.15	2 200	684	803 352	67.41	1.69	69.10	70.33	

Révision: 2939

10

Titre : PERF009 - Calcul élastique de la pompe RIS

Date: 25/03/2010 Page: 11/11 Responsable: Nicolas SELLENET Clé: V1.01.262

Synthèse des résultats

Machine Aster	Mod	od Nb DDL	Mémoire (Mo)		Temps exécution (MECA_STATIQUE) (sec)				
			Allouée	Utilisée (*)	USER	SYSTEM	USER +SYS	ELAPSED	
	10.1.12 Linux 64	Α	803 352	4000	3 975	278.72	17.79	296.51	297.15
		В	803 352	4000	3 975	300.73	16.79	317.52	232.68
Linux 64		С	803 352	4000	3 975	388.16	17.25	405.41	212.47
bits (ia64) "Bull" 10.1.15	D	803 352	2200	888	149.31	7.11	156.42	166.46	
	10 1 15	10 1 15 E	803 352	2200	790	120.69	6.32	127.01	129.11
	10.1.13	F	803 352	2200	717	83.21	1.88	85.09	85.15
		G	803 352	2200	684	67.41	1.69	69.10	70.33

(*) pour les modélisations avec MUMPS (D,E,F,G), la mémoire utilisée indiquée est celle d'Aster, elle n'inclut pas celle nécessaire à MUMPS.

On constate que l'on atteint une efficacité parallèle de 35% sur 4 processeurs avec un parallélisme OpenMP. Ce chiffre est à comparer à celui obtenu sur le cas-test PERF010 (60% d'efficacité sur 4 processeurs). Ceci montre que ce type de parallélisme apporte des performances qui sont dépendantes du problème étudié (géométrie, blocages, etc ...).

Le même constat peut être fait sur le parallélisme MPI avec des performances parallèles correctes mais en retrait par rapport au cas-test PERF010.