Titre : Opérateur POST_DYNA_ALEA Date : 22/10/2014 Page : 1/9
Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

Opérateur POST DYNA ALEA

1 But

POST_DYNA_ALEA permet d'effectuer deux types de post-traitement à l'issue d'un calcul de dynamique stochastique :

Calcul de courbes de fragilité à partir d'une table contenant les résultats d'une simulation de Monte Carlo

A partir d'une table [table_sdaster] contenant l'information sur les niveaux d'excitation (en analyse sismique, on choisit en général le PGA) et la variable d'intérêt caractérisant la défaillance ou non de la structure, POST_DYNA_ALEA permet de déterminer les paramètres d'une courbe de fragilité selon le modèle lognormale et de calculer des valeurs de cette courbe. Le lecteur peut consulter [U2.08.05] pour une description plus détaillée.

Post-traitement statistiquement des résultats de type interspectre.

POST_DYNA_ALEA permet sur des fonctions sélectionnées dans un concept de type [interspectre] de calculer des paramètres statistiques : moments spectraux, écart-type, distribution des pics, fréquence centrale.

La matrice interspectrale peut être obtenue par différents opérateurs : LIRE_INTE_SPEC [U4.36.01], CALC_INTE_SPEC [U4.36.03], DEFI_INTE_SPEC [U4.36.02], DYNA_ALEA_MODAL [U4.53.22], DYNA_SPEC_MODAL [U4.53.23] ou REST_SPEC_PHYS [U4.63.22]. On se reportera à [R7.10.01] pour la description des traitements réalisés.

Cet opérateur produit une table de type table sdaster imprimable par IMPR TABLE [U4.91.03].

Titre: Opérateur POST_DYNA_ALEA Date: 22/10/2014 Page: 2/9
Responsable: Irmela ZENTNER Clé: U4.84.04 Révision: 12495

2 Syntaxe

```
[table_sdaster] = POST_DYNA_ALEA
          / FRAGILITE= _F(
                         •
                           TABL RESU = tabres
                                                                 [table sdaster]
                         \Diamond
                           VALE = liste
                                                                 [1 R]
                         \Diamond
                           LIST PARA = laster
                                                                 [listr8]
                                             / 'EMV'
                            METHODE =
                                                / 'REGRESSION'
                            SEUIL =
                                         SEUIL
                                                                 [R]
           si METHODE =
                                 / 'EMV'
                            AM INI
                                           am0
                                                                 [R]
                            BETA INI =
                                           / beta0
                                                                 [R]
                                                                 [DEFAUT]
                                              0.3
                            FRACTILES = fract
                                                                 [listr8]
                            NB TIRAGE = nbt
                         \Diamond
                                                                 [I]
                            ),
          / INTERSPECTRE= _F(
                         ♦ INTE SPEC
                                                                 [interspectre]
                                              = inter
                         \Diamond
                            DUREE
                                              = duree
                                                                 [R]
                                   NUME ORDRE I = lnumi
                                                                            [1 Kn]
                                   NUME ORDRE_J = lnumj
                                                                            [1 Kn]
                                   NOEUD I
                                                = lnoeudi
                                                                            [1 Kn]
                                   NOEUD J
                                                 = lnoeudj
                                                                            [1 Kn]
                                                = lcmpi
                                   NOM CMP I
                                                                            [1 Kn]
                                   NOM_CMP_J
                                                = lcmpj
                                                                            [l_Kn]
                                                  = / 'TOUT'
                               OPTION
                                                    / 'DIAG'
                            MOMENT =
                                           lmom
                                                                            [l I]
                            ),
          INFO =
                         1
                                                                 [DEFAUT]
                         2
       \Diamond
          TITRE =
                     titre
                                                                 [1 Kn]
    ) ;
```

Titre : Opérateur POST_DYNA_ALEA Date : 22/10/2014 Page : 3/9
Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

3 Opérandes

3.1 Mot clé fragilite

FRAGILITE =

Le mot_clé FRAGILITE permet de déterminer les paramètres A_m et β (médiane et écart-type logarithmique) d'une courbe de fragilité selon le modèle log-normale [U2.08.05] :

$$P_{f|a} = \Phi\left(\frac{\ln(a/A_m)}{\beta}\right)$$

On peut également calculer les valeurs de la courbe pour les valeurs de paramètres A_m et β obtenues. L'option FRACTILES (facultatif) permet en outre de déterminer des fractiles pour la courbe par une méthode de rééchantillonnage de l'échantillon original qu'on a renseigné dans TABL RESU.

3.1.1 Opérande TABL RESU

◆ TAB_RESU = tabres [table_sdaster]

On donne le nom de la table <code>[table_sdaster]</code> qu'on doit avoir crée auparavant à l'aide de <code>CREA_TABLE</code> [U4.33.02] . Cette table doit avoir au moins deux colonnes avec clés d'accès (nom de label de colonne) : <code>PARA_NOCI</code> (c'est l'indicateur caractérisant le niveau de l'excitation) et <code>DEFA</code> (les valeurs de cette colonne sont 0 si on n'a pas observé de défaillance ou 1 s'il y a eu défaillance) ou <code>DEMANDE</code> (les valeurs de la variable d'intérêt réelle caractérisant la défaillance ou l'endommagement, appelé aussi demande sismique dans ma littérature).

3.1.2 Opérande METHODE

On choisit entre les deux méthodes pour le calcul de la courbe de fragilité lognormale : EMV pour l'estimation par maximum de vraisemblance ou REGRESSION pour la régression linéaire. On trouve plus de détails sur ces deux méthodes dans la documentation [U2,08.05] . Si l'on choisit REGRESSION , alors la table tabres doit contenir une colonne DEMANDE renseignant la demande sismique (variable d'intérêt comme le drift, une contrainte maximale, ...) et il faut renseigner le seuil de défaillance via le mot-clé SEUIL .

3.1.3 Opérande SEUIL

Si la table TAB_RESU contient une colonne DEMANDE , alors il faut renseigner le seuil de cette variable à partir duquel la structure est considérée défaillante.

3.1.4 Opérandes LIST PARA et VALE

On peut donner une liste de réels, valeurs pour lesquelles on évalue la courbe de fragilité.

Ceci peut se faire sous forme d'une liste contenant les valeurs de calcul $(a_1, a_2, ..., a_n)$: $\Diamond ... VALE = liste$ [1 R]

ou en donnant le nom du concept de type listr8 contenant la liste des valeurs :

♦...LIST PARA = liste [listr8]

Titre : Opérateur POST_DYNA_ALEA Date : 22/10/2014 Page : 4/9
Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

3.1.5 Opérande am ini et beta ini

♦ .. AM_INI
◊ .. BETA INI

Si on a choisi METHODE = 'EMV', alors il est impératif de donner une valeur initiale pour l'estimation du paramètre A_m et il est conseillé de donner une estimation initiale pour β (points de démarrage pour l'algorithme d'optimisation).

3.1.6 Opérandes FRACTILES et NB TIRAGE

Ces opérandes doivent être renseignées si on souhaite déterminer des intervalles de confiances ou plus précisément des fractiles pour la courbe de fragilité estimé par la méthode du maximum de vraisemblance ('EMV'). La méthode de rééchantillonnage (dite aussi « bootstrap » dans la littérature anglo-saxonne) est utilisée pour cela. L'opérande FRACTILES permet de donner les fractiles qu 'on souhaite calculer.

♦ FRACTILES = fract [listr8]

Par défaut, on tire autant d'échantillons « bootstrap » qu'on dispose de données (c'est le nombre N de simulation de Monte Carlo effectué au préalable et dont les résultats sont stockées dans la table <code>TABL_RESU</code>). La commande <code>NB_TIRAGE</code> permet néanmoins de diminuer le nombre de tirage à effectuer :

$$\Diamond$$
 NB TIRAGE = nbt [I]

Il faut que nbt soit inférieur ou égale au nombre de valeurs dans TABL_RESU ($nbt \le N$). Cette fonctionnalité permet de réduire le temps de calcul mais est déconseillé dans le cas général car les résultats sont peu fiables.

3.2 Mot clé interspectre

3.2.1 Opérande INTE SPEC

♦ INTE_SPEC = inter

inter est le nom utilisateur de la matrice interspectrale.

La matrice interspectrale peut être obtenue par différents opérateurs: LIRE_INTE_SPEC [U4.36.01], CALC_INTE_SPEC [U4.36.03], DEFI_INTE_SPEC [U4.36.02], DYNA_ALEA_MODAL [U4.53.22], DYNA_SPEC_MODAL [U4.53.23] ou REST_SPEC_PHYS [U4.63.22].

Remarque:

Les moments spectraux sont définis comme des intégrales de la densité spectrale de puissance (DSP):

$$\lambda_{i} = \int_{-\infty}^{+\infty} |\omega|^{i} S_{XX}(\omega) d\omega = 2 \int_{0}^{+\infty} \omega^{i} S_{XX}(\omega) d\omega$$

Ainsi, si la DSP est donnée pour les fréquences positives uniquement, POST_DYNA_ALEA multiplie par 2 les intégrales des DSP calculés pour $\omega>0$. Par ailleurs, les DSP sont définis en fonction de la fréquence naturelle $f=2\,\pi\,\omega$ (Hz) dans POST_DYNA_ALEA. On utilise les formules suivantes [cf. R7.010.01]:

$$S_{\mathbf{XX}}(f) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-2i\pi f \tau} d\tau;$$

$$S'_{\mathbf{XX}}(\omega) = \frac{1}{2\pi} S_{\mathbf{XX}}(f)$$

Titre : Opérateur POST_DYNA_ALEA Date : 22/10/2014 Page : 5/9
Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

Le lecteur est invité à consulter la documentation de la commande DYNA_ALEA_MODAL [U4.53.22] pour davantage d'informations sur le sens des paramètres du mot-clé.

3.2.2 Opérande s nume ordre i, nume ordre j

```
♦ / ♦ NUME_ORDRE_I = lnumi♦ NUME ORDRE J = lnumj
```

Ces mots-clés permettent de définir les termes de la matrice dont les fonctions vont subir le traitement.

Lorsque les autospectres ou les interspectres sont calculés sur les modes :

- lnumi est la liste des numéros d'ordre des modes 'i'. Exemple: (2,3,1).
- lnumj est la liste des numéros d'odre des modes 'j'. Exemple : (2,1,4)

Les indices sont appairés suivant le même rang.

- (2,2) correspond à l'autospectre sur le mode 2,
- (3,1) correspond à l'interspectre entre le mode 3 et le mode 1.

lnumi et lnumj doivent contenir le même nombre de termes.

3.2.3 Opérandes NOEUD_I, NOEUD_J, NOM_CMP_I, NOM_CMP_J

- \bullet / \bullet NOEUD_I = lnoeudi
 - ♦ NOEUD_J = lnoeudj
 - ♦ NOM CMP I = lcmpi
 - ♦ NOM CMP J = lcmpj

Lorsque les autospectres ou les interspectres sont calculés sur les **nœuds** dans une direction donnée :

- Inoeudi est la liste des nœuds suivant "i": (NO92, NO95, NO98)
- Inoeudj est la liste des nœuds suivant "j": (NO92, NO92, NO92)
- lcmpi est la liste des composantes suivant "i": (DX, DX, DY)
- lcmpj est la liste des composantes suivant "j": (DX, DX, DX)

Les nœuds et composantes sont appairés suivant le même rang :

- $(NO92\,DX\,,NO92\,DX)$ correspond à l'autospectre au nœud NO92 dans la direction $DX\,,$
- $(NO98\,DY,NO92\,DX)$ correspond à l'interspectre entre le nœud NO92 dans la direction DX et le nœud NO95 dans la direction DY.

lnoeudi, lnoeudi, lcmpi et lcpmi doivent contenir le même nombre de termes.

3.2.4 Opérande OPTION

```
    ♦ / OPTION = 'TOUT'
    Les calculs sont effectués sur l'ensemble des interspectres de la matrice.
    / OPTION = 'DIAG'
```

Les calculs sont effectués sur l'ensemble des autospectres de la matrice et uniquement pour ceux-là.

3.2.5 Mot clé dures

Si le mot-clé duree est renseigné, alors on détermine le maximum moyen ainsi que le facteur de pic du processus stochastique stationnaire Gaussien selon les formules de Vanmarcke. duree désigne

Révision: 12495

Date: 22/10/2014 Page: 6/9

Clé: U4.84.04

Titre : Opérateur POST_DYNA_ALEA
Responsable : Irmela ZENTNER

alors l'intervalle du temps considéré pour estimer ces quantités. A titre d'exemple, dans le cadre d'une analyse sismique, duree peut être pris égal à la durée de la phase forte du signal sismique.

3.2.6 Opérande MOMENT

♦ MOMENT = lmom

1 mom est la liste des ordres des moments spectraux qui seront calculés. Par défaut, les moments spectraux d'ordres 0, 1, 2, 3 et 4 sont toujours calculés. Il convient donc de mentionner dans cette liste les moments d'ordre supérieur à 4. Exemple : (5,7,8).

3.3 Opérande INFO

♦ INFO =

- impression des résultats demandés.
- 2 comme 1 mais avec plus de détails.

3.4 Opérande TITRE

♦ TITRE = titre

titre est le titre du calcul. Il sera imprimé en tête des résultats. Voir [U4.03.01].

Titre: Opérateur POST_DYNA_ALEA Date: 22/10/2014 Page: 7/9
Responsable: Irmela ZENTNER Clé: U4.84.04 Révision: 12495

4 Résultats fournis

4.1 Mot-clé fragilite

Les paramètres de la table en sortie sont :

PARAMETRES	TYPE	DESCRIPTION
TITRE	TXM	Titre de la table
AM	R	Paramètre A_m estimé par maximum de vraisemblance à partir de l'échantillon original
BETA	R	Paramètre β estimé par maximum de vraisemblance à partir de l'échantillon original
PARA_NOCI	R	Valeurs du paramètre de nocivité pour lesquelles on évalue les courbes
PFA	R	Valeurs de la courbe de fragilité (paramètres AM et BETA)
FRACTILES	R	Valeurs des courbes pour le fractile f

4.2 Mot-cle INTE_SPEC

Pour chaque fonction choisie dans l'interspectre, POST_DYNA_ALEA stocke dans une table accessible par IMPR_TABLE [U4.91.03]

- les moments spectraux
- des paramètres statistiques (à utiliser s'il s'agit d'un autospectre):
 - · écart-type,
 - facteur d'irrégularité,
 - nombre moyen d'extrema par seconde,
 - nombre de passages par zéro par seconde,
 - fréquence centrale
 - le facteur de pic selon la formule de Vanmarcke
 - le maximum moyen selon la formule de Vanmarcke

Les paramètres de cette table sont :

PARAMETRES	TYP E	DESCRIPTION
NUME_ORDRE_I	I	numéro d'ordre des modes i
NUME_ORDRE_J	I	numéro d'ordre des modes j
NOEUD_I	NO	Noeud i
NOEUD_J	NO	Noeud j
NOM_CMP_I	TXM	Nom de la composante au noeud $i (DX, DY, DY)$
NOM_CMP_J	TXM	Nom de la composante au noeud $j (DX, DY, DY)$
LAMBDA_00	R	moment spectral d'ordre 0
LAMBDA_01	R	moment spectral d'ordre 1
LAMBDA_02	R	moment spectral d'ordre 2
LAMBDA_03	R	moment spectral d'ordre 3
LAMBDA_04	R	moment spectral d'ordre 4
ECART	R	écart-type
NB_EXTREMA_P_S	R	nombre moyen d'extrema par seconde
NB_PASS_ZERO_P_S	R	nombre de passages par zéro par seconde
FREQ_APPAR	R	fréquence centrale
FACT_IRRE	R	facteur d'irrégularité
MAX_MOY	R	Maximum moyen
FACT_PIC	R	Facteur de pic

Date: 22/10/2014 Page: 8/9

Titre : Opérateur POST_DYNA_ALEA

Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

Si INFO = 1 on imprime dans le fichier MESSAGE

- · le nom utilisateur de la table,
- les deux indices (les 2 nœuds ou les 2 modes) de la fonction sélectionnée,
- le type de résultat calculé,
- les options de calculs choisies ou prises par défaut,
- les valeurs des fonctions sélectionnées.

Titre : Opérateur POST_DYNA_ALEA Date : 22/10/2014 Page : 9/9
Responsable : Irmela ZENTNER Clé : U4.84.04 Révision : 12495

5 Exemple

5.1 Mot-clé fragilite

Exemple d'une table générées au préalable, en faisant appel à CALC_TABLE, lors de la simulation de Monte Carlo (voir aussi [U2.08.05]) :

```
#TABLE SDASTER
PARA NOCI
                  DEFA
 5.00000E-01
  4.50000E-01
                        0
  3.00000E-01
                        0
 3.00000E-01
                        1
 1.50000E-01
 2.50000E-01
                        0
 9.00000E-01
                        1
  4.00000E-01
                        1
```

Exemple du calcul d'une courbe de fragilité :

```
TAB_POST=POST_DYNA_ALEA ( FRAGILITE= (_F(TABL_RESU=TAB1, LIST_PARA=lr, AM_INI =0.3 , BETA_INI=0.1 , FRACTILE = (0.0,0.05,0.5,0.95,1.0), NB_TIRAGE =50, ),),

TITRE = 'courbe 1',
INFO=2,);
```

Dans cette exemple, on effectue un rééchantillonnage (N = nbtr = 50) pour estimer les fractiles de la courbe 5%, 50% (médiane) et 95% et on détermine les enveloppes (100% et 0%).

5.2 Mot-clé interspectre

Premier exemple:

Deuxième exemple :

```
POSTALEA=POST_DYNA_ALEA(INTERSPECTRE = _F( INTE_SPEC=INTERS, NOEUD_I='N1', NOM_CMP_I='DX', NOEUD_J='N1', NOM_CMP_J='DX', NOM_CMP_J='DX',
```