Date: 25/09/2013 Page: 1/17

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable : Sam CUVILLIEZ Clé : R7.01.22

Loi de comportement viscoplastique VISC DRUC PRAG

Résumé:

Ce document décrit la loi de comportement viscoplastique VISC_DRUC_PRAG basée sur le modèle élastoplastique de Drucker-Prager et prenant en compte la viscosité selon une loi puissance de type Perzyna. Son domaine d'application est l'argilite qui est la roche hôte du concept de stockage.

Le modèle proposé comporte un seul mécanisme viscoplastique. Le critère s'écrouit avec la déformation viscoplastique cumulée en passant par trois seuils: élastique, de pic et ultime. L'écoulement est non associé, le potentiel d'écoulement étant un potentiel de Drucker-Prager s'écrouissant selon trois niveaux : élastique, de pic et ultime. Entre les seuils, les écrouissages sont linéaires.

Cette loi peut être utilisée dans une modélisation mécanique pure comme elle peut être utilisée dans une modélisation THM. Elle est disponible en 3D, déformations planes et axisymétrique. Elle est intégrée par la résolution d'une seule équation scalaire non linéaire.

Date: 25/09/2013 Page: 2/17

Clé: R7.01.22

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable : Sam CUVILLIEZ

Table des matières

1 Notations	3
2 Introduction	
3 Formulation du modèle viscoplastique VISC_DRUC_PRAG	
3.1 Équations du modèle	
4 Intégration dans Code_Aster	
4.1 Décomposition du tenseur de déformation	
4.2 Mise à jour des contraintes	
4.3 Opérateur tangent cohérent	
4.4 Données matériaux	
4.5 Les variables internes	
4.6 Résumé de l'algorithme de résolution	
5 Résultats d'un essai triaxial.	
6 Fonctionnalités et vérification.	
7 Références	
8 Descriptif des versions du document	

Titre : Loi de comportement viscoplastique VISC DRUC PRAG Responsable: Sam CUVILLIEZ

Date: 25/09/2013 Page: 3/17 Clé: R7.01.22 Révision: 11520

Notations 1

 σ désigne le tenseur des contraintes effectives en petites perturbations, noté sous la forme du vecteur suivant :

$$\sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sqrt{2} \sigma_{12} \\ \sqrt{2} \sigma_{13} \\ \sqrt{2} \sigma_{23}$$

On note:

$$D^e$$

$$I_1 = \operatorname{tr}(\sigma)$$

$$s = \sigma - \frac{I_1}{3}I$$

$$s_{II} = \sqrt{S.S}$$

$$\sigma_{\rm eq} = \sqrt{\frac{3}{2} \, s_{ij} \, s_{ij}}$$

$$I_1^{el}$$

$$s^{el} = \sigma^{el} - \frac{I_1^{el}}{3}I$$

$$\sigma_{\rm eq}^{el} = \sqrt{\frac{3}{2} \, s_{ij}^{el} \, s_{ij}^{el}}$$

$$\tilde{\varepsilon} = \varepsilon - \frac{tr(\varepsilon)}{3}I$$

$$\varepsilon_v = tr(\varepsilon)$$

$$\varepsilon_{v} = tr(\varepsilon)$$

$$\dot{p} = \sqrt{\frac{2}{3} \, \dot{\varepsilon}_{ij}^{vp} \, \dot{\varepsilon}_{ij}^{vp}}$$

$$\alpha_0$$
 , R_0 et β_0

$$\alpha_{\it pic}$$
 , $R_{\it pic}$ et $\beta_{\it pic}$

$$\alpha_{ult}$$
 , R_{ult} et β_{ult}

$$\Phi$$
 A
 n

$$P_{ref}$$

tenseur d'élasticité

premier invariant des contraintes

tenseur des contraintes déviatoires

deuxième invariant du tenseur des contraintes déviatoires contrainte équivalente

trace de la prédiction élastique des contraintes

tenseur des contraintes déviatoires de la prédiction élastique des contraintes

contrainte équivalente de la prédiction élastique des contraintes

déviateur des déformations

déformation volumique

déformations déviatoriques viscoplastiques cumulées

surface de charge viscoplastique potentiel d'écoulement viscoplastique

paramètres d'écrouissage correspondant au seuil d'élasticité (p=0)

paramètres d'écrouissage correspondant

pic

$$(p = p_{pic})$$

paramètres d'écrouissage correspondant au seuil ultime

$$(p = p_{ult})$$

amplitude de la vitesse des déformations irréversibles

paramètre de fluage

puissance de la loi de fluage pression de référence

Titre: Loi de comportement viscoplastique VISC DRUC PRAG

Date: 25/09/2013 Page: 4/17 Responsable: Sam CUVILLIEZ Clé: R7.01.22 Révision: 11520

2 Introduction

Ce document décrit l'intégration de la loi de comportement viscoplastique VISC DRUC PRAG dans Code Aster. Cette loi comporte un seul mécanisme viscoplastique. Le critère viscoplastique s'écrouit avec la déformation viscoplastique déviatorique cumulée en passant par trois seuils : élastique pour une déformation viscoplastique nulle, un seuil dit de pic pour une déformation viscoplastique dite de pic (paramètre du modèle) et un seuil ultime pour une déformation viscoplastique dite ultime (paramètre du modèle). Entre les seuils, les fonctions d'écrouissage sont linéaires. Dans Code_Aster il existe une autre loi basée sur le modèle de Drucker Prager et utilisée en élastoplasticié sous une forme associée sous le nom druck prager ou non associée sous le nom druck prag n a (voir [R7.01.16]).

Formulation du modèle viscoplastique VISC DRUC PRAG

3.1 Équations du modèle

Ce modèle se base sur une formulation viscoplastique du type Drucker-Prager, où la surface de charge est définie par :

$$f = \sqrt{\frac{3}{2}} s_{\text{II}} + \alpha(p) I_1 - R(p)$$

 $\alpha(p)$ et R(p) sont des fonctions de la déformation viscoplastique cumulée p,

On introduit un potentiel d'écoulement viscoplastique G:

$$G = \sqrt{\frac{3}{2}} s_{II} + \beta(p) I_1;$$

Pour l'évolution du critère f et du potentiel G nous distinguons trois seuils distincts correspondants à trois valeurs de la variable d'écrouissage: un seuil élastique, un seuil de pic et un seuil ultime. Entre ces seuils, l'écrouissage est linéaire. Entre le seuil élastique et le seuil de pic, l'écrouissage est positif, après le pic l'écrouissage est négatif et devient constant après le seuil ultime.

Les fonctions liées à la cohésion s'écrivent sous la forme suivante :

$$\alpha(p) = \left(\frac{\alpha_{pic} - \alpha_0}{p_{pic}}\right) p + \alpha_0 \text{ pour } 0$$

$$\alpha(p) = \left(\frac{\alpha_{ult} - \alpha_{pic}}{p_{ult} - p_{pic}}\right) (p - p_{pic}) + \alpha_{pic} \text{ pour } p_{pic}$$

$$\alpha(p) = \alpha_{\mathit{ult}} \ \mathsf{pour} \ p \! > \! p_{\mathit{ult}}$$

Les fonctions liées à la dilatance s'écrivent sous la forme suivante :

$$\beta(p) = \left(\frac{\beta_{pic} - \beta_0}{p_{pic}}\right) p + \beta_0 \text{ pour } 0$$

$$\beta\left(\right.p) = \left(\frac{\beta_{\mathit{ult}} - \beta_{\mathit{pic}}}{p_{\mathit{ult}} - p_{\mathit{pic}}}\right) \left(\left.p - p_{\mathit{pic}}\right) + \beta_{\mathit{pic}} \right. \text{ pour } \left.p_{\mathit{pic}}$$

$$\beta(p) = \beta_{ult} \text{ pour } p > p_{ult}$$

Les fonctions d'écrouissage s'écrivent :

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 5/17 Clé : R7.01.22 Révision : 11520

$$R(p) = \left(\frac{R_{pic} - R_0}{p_{pic}}\right) p + R_0 \text{ pour } 0$$

$$R(p) = \left(\frac{R_{ult} - R_{pic}}{p_{ult} - p_{pic}}\right) \left(p - p_{pic}\right) + R_{pic} \text{ pour } p_{pic}$$

$$R(p) = R_{ult}$$
 pour $p > p_{ult}$

Les contraintes sont reliées aux déformations par la loi de Hooke :

$$\sigma = D^e(\varepsilon - \varepsilon^{vp})$$

Quand le seuil viscoplastique est atteint, des déformations irréversibles viscoplastiques sont générées et exprimées selon la théorie de Perzyna par :

$$d \varepsilon_{ij}^{vp} = A \left\langle \frac{f}{P_{ref}} \right\rangle^n \frac{\partial G}{\partial \sigma_{ij}} dt$$
;

f étant le critère de viscoplasticité ; A et n sont des paramètres du modèle ; P_{ref} une pression de référence.

$$\frac{\partial \, G}{\partial \, \sigma_{ij}} \! = \! \sqrt{\frac{3}{2}} \frac{\partial \, s_{II}}{\partial \, \sigma_{ij}} \! + \! \beta (\, p) \frac{\partial \, I_{1}}{\partial \, \sigma_{ij}} \quad \text{et} \quad \dot{p} \! = \! \sqrt{\frac{2}{3}} \, \dot{\tilde{\varepsilon}}_{ij}^{\nu p} \, \dot{\tilde{\varepsilon}}_{ij}^{\nu p}$$

avec, $\tilde{\varepsilon}_{ii}^{vp}$ le déviateur du tenseur de déformation,

$$\begin{split} \frac{\partial s_{II}}{\partial \sigma_{ij}} &= \frac{\partial s_{II}}{\partial s_{kl}} \frac{\partial s_{kl}}{\partial \sigma_{ij}} = \frac{s_{kl}}{s_{II}} \left(\delta_{ik} \delta_{jl} - \frac{1}{3} \delta_{ij} \delta_{kl} \right) = \frac{s_{ij}}{s_{II}} \\ & \frac{\partial I_1}{\partial \sigma_{ij}} = \frac{\partial tr(\sigma_{ij})}{\partial \sigma_{ij}} = \delta_{ij} \\ & \frac{\partial G}{\partial \sigma_{ii}} = \sqrt{\frac{3}{2}} \frac{s_{ij}}{s_{II}} + \beta(p) \delta_{ij} \end{split}$$

et

ďoù

Titre : Loi de comportement viscoplastique VISC DRUC PRAG

Date: 25/09/2013 Page: 6/17 Responsable: Sam CUVILLIEZ Clé: R7.01.22 Révision: 11520

Résumé des équations :

Le critère :

$$\begin{split} f = & \sqrt{\frac{3}{2}} \, s_{II} + \left[\left(\frac{\alpha_{pic} - \alpha_0}{p_{pic}} \right) p + \alpha_0 \right] I_1 - \left[\left(\frac{R_{pic} - R_0}{p_{pic}} \right) p + R_0 \right] \text{ pour } 0$$

Le potentiel d'écoulement :

$$\begin{split} G = & \sqrt{\frac{3}{2}} \, s_{II} + \left[\left(\frac{\beta_{pic} - \beta_0}{p_{pic}} \right) p + \beta_0 \right] I_1 \quad \text{pour} \quad 0$$

 α_0 , R_0 et β_0 : paramètres d'écrouissage correspondant au seuil d'élasticité (p=0) $lpha_{\it pic}$, $R_{\it pic}$ et $eta_{\it pic}$: paramètres d'écrouissage correspondant au paramètre $p_{\it pic}$ $lpha_{ult}$, R_{ult} et eta_{ult} : paramètres d'écrouissage correspondant au paramètre p_{ult}

La loi de Hooke:

$$\begin{split} &\sigma\!=\!D^e\!\big(\varepsilon\!-\!\varepsilon^{vp}\big)\\ &f\left(\sigma\,,\,p\right)\!\!\leq\!\!0\quad\text{domaine d'élasticit\'e}\;\;;\;\; \dot{\varepsilon}^{vp}_{\;ij}\!=\!0\\ &f\left(\sigma\,,\,p\right)\!\!>\!\!0\quad\text{viscoplasticit\'e}\qquad ;\;\; \dot{\varepsilon}^{vp}_{\;ij}\!=\!A\!\left(\frac{f}{P_{vef}}\right)^{\!n}\!\!\frac{\partial\,G}{\partial\,\sigma_{ii}}\;\;;\;\; \dot{p}\!=\!\sqrt{\frac{2}{3}\,\dot{\tilde{\varepsilon}}^{vp}_{\;ij}\,\dot{\tilde{\varepsilon}}^{vp}_{\;ij}} \end{split}$$

Intégration dans Code Aster 4

4.1 Décomposition du tenseur de déformation

La décomposition de l'incrément de déformation totale s'écrit :

$$\Delta \varepsilon = \Delta \varepsilon^e + \Delta \varepsilon^{vp}$$

où Δ_{ε}^{e} et $\Delta_{\varepsilon}^{vp}$ sont les incréments des tenseurs élastiques et viscoplastiques.

4.2 Mise à jour des contraintes

Les Notations suivantes sont adoptées : A^- , A et ΔA désignant respectivement les quantités au début, à la fin du pas de temps et son incrément durant le pas.

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 7/17 Clé : R7.01.22 Révision : 11520

On exprime les contraintes actualisées à l'instant + par rapport à celles calculées à l'instant - :

$$\sigma = \sigma^{-} + D^{e} \Delta \varepsilon^{e} ; s = s^{-} + 2 \mu \Delta \tilde{\varepsilon}^{e} ; I_{1} = I_{1}^{-} + 3K \Delta \varepsilon_{v}^{e}$$

$$\sigma_{ij} = s_{ij} + \frac{I_{1}}{3} \delta_{ij} ;$$

$$\Delta \epsilon_{ij} = \Delta \tilde{\epsilon} + tr \frac{(\Delta \epsilon)}{3} \delta_{ij} = \Delta \tilde{\epsilon}_{ij} + \frac{\Delta \epsilon_{v}}{3} \delta_{ij};$$

$$I_1 = tr(\sigma)$$
 ; $\varepsilon_n = tr(\Delta \varepsilon)$;

Prédiction élastique :

$$\sigma^{el} = \sigma^- + D^e \Delta \varepsilon$$
; $s^{el} = s^- + 2 \mu \Delta \tilde{\varepsilon}$; $I_1^{el} = I_1^- + 3K \Delta \varepsilon$

4.2.1 Solution élastique

Calcul de l'incrément des contraintes en régime élastique :

$$\Delta \sigma_{ij} = \Delta s_{ij} + \frac{\Delta I_1}{3} \delta_{ij}$$
; $\Delta \varepsilon_{ij} = \Delta \tilde{\varepsilon}_{ij} + \frac{\Delta \varepsilon_{v}}{3} \delta_{ij}$

$$\Delta \sigma_{ij} = 2 \mu \Delta \tilde{\epsilon_{ij}} + 3K \frac{\Delta \epsilon_{v}}{3} \delta_{ij} = 2 \mu \Delta \tilde{\epsilon_{ij}} + K \Delta \epsilon_{v} \delta_{ij} = 2 \mu \left(\Delta \epsilon_{ij} - \frac{tr(\Delta \epsilon)}{3} \delta_{ij} \right) + K tr(\Delta \epsilon) \delta_{ij}$$

$$\Delta \sigma_{ij} = 2 \mu \Delta \varepsilon_{ij} + \left(K - \frac{2G}{3} \right) tr(\Delta \varepsilon) \delta_{ij}$$

$$\begin{vmatrix} \Delta \sigma_{11} \\ \Delta \sigma_{22} \\ \Delta \sigma_{33} \\ \sqrt{2} \Delta \sigma_{12} \\ \sqrt{2} \Delta \sigma_{13} \\ \sqrt{2} \Delta \sigma_{23} \end{vmatrix} = \begin{vmatrix} \frac{4\mu}{3} + K & K - \frac{2\mu}{3} & K - \frac{2\mu}{3} & 0 & 0 & 0 \\ K - \frac{2\mu}{3} & \frac{4\mu}{3} + K & K - \frac{2\mu}{3} & 0 & 0 & 0 \\ K - \frac{2\mu}{3} & K - \frac{2\mu}{3} & \frac{4\mu}{3} + K & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\mu & 0 & 0 \\ 0 & 0 & 0 & 0 & 2\mu & 0 \\ 0 & 0 & 0 & 0 & 2\mu & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\mu \end{vmatrix} . \begin{vmatrix} \Delta \varepsilon_{11} \\ \Delta \varepsilon_{22} \\ \Delta \varepsilon_{33} \\ \sqrt{2} \Delta \varepsilon_{12} \\ \sqrt{2} \Delta \varepsilon_{13} \\ \sqrt{2} \Delta \varepsilon_{23} \end{vmatrix}$$

4.2.2 Solution viscoplastique

On exprime le champ de contraintes à l'instant + :

$$\begin{split} &\sigma_{ij}\!=\!\sigma_{ij}^-\!+\!D_{ijkl}^e\Delta\,\varepsilon_{kl}^e\!=\!\sigma_{ij}^-\!+\!D_{ijkl}^e\big(\Delta\,\varepsilon_{kl}\!-\!\Delta\,\varepsilon_{kl}^{vp}\big)\!=\!\sigma_{ij}^{el}\!-\!D_{ijkl}^e\Delta\,\varepsilon_{kl}^{vp}\\ &s_{ij}\!=\!s_{ij}^{el}\!-\!2\,\mu\,\Delta\,\tilde{\varepsilon}_{ij}^{vp}\quad\text{et}\quad I_1\!=\!I_1^{el}\!-\!3\mathrm{K}\,\Delta\,\varepsilon_v^{vp}\\ &\sigma_{ij}\!=\!s_{ij}\!+\!\frac{I_1}{3}\delta_{ij} \end{split}$$

qui s'écrit en remplaçant l'accroissement des déformations visqueuses par leurs expressions sous la forme :

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 8/17 Clé : R7.01.22 Révision : 11520

 Φ et $\frac{\partial G}{\partial \sigma}$ caractérisent l'amplitude et la direction de la vitesse des déformations irréversibles.

 $f\left(\sigma,p\right)$ étant le critère de viscoplasticité, A et n sont des paramètres du modèle.

Le critère viscoplastique à l'instant + s'écrit :

$$f(\sigma,p)=f\left(\sigma_{ij}^{el}-D_{ijkl}^{e}\langle\Phi\rangle\frac{\partial G}{\partial\sigma_{ij}}(\sigma,p)\Delta t,p\right)$$

L'incrément de la déformation viscoplastique étant,

$$\Delta \varepsilon_{ij}^{vp} = \langle \Phi \rangle \frac{\partial G}{\partial \sigma_{ij}} \Delta t = \langle \Phi \rangle \left(\sqrt{\frac{3}{2}} \frac{s_{ij}}{s_{II}} + \beta (p) \delta_{ij} \right) \Delta t$$

La déformation volumique viscoplastique étant

$$\Delta \varepsilon_{v}^{vp} = 3 \langle \Phi \rangle \beta(p) \Delta t$$

La composante déviatorique de la déformation viscoplastique s'écrit sous la forme :

$$\begin{split} \Delta \, \tilde{\varepsilon}_{ij}^{vp} = & \langle \Phi \rangle \sqrt{\frac{3}{2}} \, \frac{s_{ij}}{s_{II}} \, \Delta \, t \quad \text{ou} \quad \Delta \, \tilde{\varepsilon}_{ij}^{vp} = & \langle \Phi \rangle \, \frac{3}{2} \, \frac{s_{ij}}{\sigma_{eq}} \, \Delta \, t \\ \text{comme} \quad \sigma_{eq} = & \sqrt{\frac{3}{2}} \, s_{II} \quad , \quad s_{II} = \sqrt{s_{ij}} \, s_{ij} \quad \text{et} \quad \sigma_{\text{eq}}^{el} = & \sqrt{\frac{3}{2}} \, s_{ij}^{el} \, s_{ij}^{el} \end{split}$$

On écrit aussi les égalités suivantes :

$$s_{ij} \frac{\sigma_{eq}^{el}}{\sigma_{eq}} = s_{ij}^{el}$$

$$\Delta p = \sqrt{(\frac{2}{3} \Delta \tilde{\epsilon}_{ij}^{vp} \Delta \tilde{\epsilon}_{ij}^{vp})}$$

$$\frac{\Delta p}{\Delta t} = \langle \Phi \rangle = A \left\langle \frac{f(\sigma, p)}{P_{ref}} \right\rangle^n$$
 éq 1

d'où : $\Delta p = \langle \phi \rangle \Delta t$

En utilisant ces égalités on peut trouver une expression pour s_{ij} , σ_{eq} et I_1 en fonction de s_{ij}^{el} , σ_{eq}^{el} , I_1^{el} et Δp :

$$s_{ij} = s_{ij}^{el} - 2\mu \Delta \tilde{\epsilon}_{ij}^{vp} = s_{ij}^{el} - 3\mu \langle \Phi \rangle \frac{s_{ij}}{\sigma_{eq}} \Delta t = s_{ij}^{el} - 3\mu \langle \Phi \rangle \frac{s_{ij}^{el}}{\sigma_{eq}^{el}} \Delta t$$

$$s_{ij} = s_{ij}^{el} \left(1 - \frac{3\mu \langle \Phi \rangle}{\sigma_{eq}^{el}} \Delta t \right) = s_{ij}^{el} \left(1 - \frac{3\mu}{\sigma_{eq}^{el}} \Delta p \right)$$

$$\sigma_{eq}\!=\!\sigma_{eq}^{el}\!-\!3\,\mu\,\langle\Phi\rangle\Delta\,t\!=\!\sigma_{eq}^{el}\!-\!3\,\mu\,\Delta\,p \qquad \text{\'eq 2}$$

Titre : Loi de comportement viscoplastique VISC DRUC PRAG

Date: 25/09/2013 Page: 9/17 Responsable: Sam CUVILLIEZ Révision: 11520

$$I_1 = I_1^{el} - 3K \Delta \varepsilon_v^{vp} = I_1^{el} - 9K \beta \langle \Phi \rangle \Delta t = I_1^{el} - 9K \beta \Delta p$$
 éq 3

4.2.3 Calcul de l'inconnue

L'incrément de déformation viscoplastique cumulée Δp est la seule inconnue du problème. Pour le déterminer, on écrit la loi d'écoulement viscoplastique (éq 1) :

$$\begin{split} &\frac{\Delta p}{\Delta t} = A \left| \frac{\sigma^{eq} + \alpha(p)I_1 - R(p)}{P_{ref}} \right|^n \\ &R(p) = R(p^- + \Delta p) = R^- + R_{const} \Delta p \; \; ; \; R_{const} = \frac{\partial R}{\partial p} \\ &\alpha(p) = \alpha(p^- + \Delta p) = \alpha^- + \alpha_{const} \Delta p \; \; ; \; \alpha_{const} = \frac{\partial \alpha}{\partial p} \\ &\beta(p) = \beta(p^- + \Delta p) = \beta^- + \beta_{const} \Delta p \; \; ; \; \beta_{const} = \frac{\partial \beta}{\partial p} \end{split}$$

Par souci de simplification de l'écriture de l'équation en Δp , on pose :

$$C = \frac{(A \Delta t)}{P_{ref}^{n}}$$

Soit, en remplaçant σ_{eq} et I_1 par leurs expressions (éq 2 et éq 3), on obtient :

$$F(\Delta p) = C \begin{pmatrix} (\sigma_{eq}^{el} + \alpha I_{1}^{el} - R^{-}) - (3\mu + R_{const} - \alpha_{const} I_{1}^{el} + 9k \alpha^{-} \beta^{-}) \Delta p \\ - \\ (9k \alpha^{-} \beta_{const} + 9k \alpha_{const} \beta^{-}) \Delta p^{2} - (9k \alpha_{const} \beta_{const}) \Delta p^{3} \end{pmatrix}^{n} - \Delta p = 0$$

On cherche $\Delta p/(\Delta p)=0$

 $F(\Delta p)=0$ est une équation scalaire non linéaire. La borne inférieure étant $x_{inf}=0$ et la borne supérieure peut

être fixée à
$$x_{\sup} = A \left| \frac{\sigma_{eq}^{el} + \alpha I_{eq}^{el} - R^-}{P_{ref}} \right|^n \Delta t$$

On utilise la méthode des cordes avec un contrôle de l'intervalle de recherche en s'inspirant du document [R5.03.04].

$$\Delta p \in [x_{\text{inf}}, x_{\text{sup}}]$$
; $x = \Delta p$

Si
$$|F(x_{\inf})| < \eta$$
 alors $\Delta p = x_{\inf}$

Si
$$|F(x_{\sup})| < \eta$$
 alors $\Delta p = x_{\sup}$

Si
$$F(x_{inf}) > 0$$
 alors $x_2 = x_{inf}$ et $y_2 = F(x_{inf})$

Date: 25/09/2013 Page: 10/17

Clé: R7.01.22

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable: Sam CUVILLIEZ

Si $F\left(x_{\sup}\right) < 0$ alors on fait une boucle en découpant x_{\sup} par 10 jusqu'à obtenir une valeur de x_{\sup} pour laquelle $F\left(x_{\sup}\right) > 0$ dans ce cas on multiplie la dernière solution par 10 et on fixe $x_1 = x_{\sup}$ et $y_1 = F\left(x_{\sup}\right)$

Si $F\left(x_{\sup}\right)>0$ alors on fait une boucle en multipliant x_{\sup} par 10 jusqu'à obtenir une valeur de x_{\sup} pour laquelle $F\left(x_{\sup}\right)<0$ et on fixe $x_1=x_{\sup}$ et $y_1=F\left(x_{\sup}\right)$

Si
$$F\left(x_{\mathrm{inf}}\right)\!\!<\!0$$
 alors $x_1\!=\!x_{\mathrm{inf}}$ et $y_1\!=\!F\left(x_{\mathrm{inf}}\right)$

Si $F\left(x_{\sup}\right)>0$ alors on fait une boucle en découpant x_{\sup} par 10 jusqu'à obtenir une valeur de x_{\sup} pour laquelle $F\left(x_{\sup}\right)<0$ dans ce cas on multiplie la dernière solution par 10 et on fixe $x_2=x_{\sup}$ et $y_2=F\left(x_{\sup}\right)$

Si $F(x_{\sup}) < 0$ alors on fait une boucle en multipliant x_{\sup} par 10 jusqu'à obtenir une valeur de x_{\sup} pour laquelle $F(x_{\sup}) > 0$ et on fixe $x_2 = x_{\sup}$ et $y_2 = F(x_{\sup})$

Des vérifications sont faites sur les valeurs que peuvent prendre les bornes et notamment si elles sont plus faibles qu'une tolérance fixée à 1.E-12, elles seront considérées égales à 0. et donc la solution Δp également. Si les bornes sont égales, on fait un redécoupage du pas de temps.

Les valeurs x_1 , x_2 , y_1 et y_2 seront les valeurs à donner en entrée à la routine zeroco qui se base sur la méthode des cordes. La solution est calculée par la formule suivante :

$$x^{n+1} = x^{n-1} - F(x^{n-1}) \frac{x^n - x^{n-1}}{F(x^n) - F(x^{n-1})}$$

Avec les valeurs suivantes, on représente la fonction scalaire à résoudre.

σ_{eq}^{el}	6,315 MPa	α_	$6,8610^{-2}$
I_1^{el}	-21,061 <i>MPa</i>	β^-	-0,147
N	4,5	R^-	1,394 <i>MPa</i>
Δt	10 s	α_{const}	13.
A	$1,510^{-12}$	β_{const}	10.
P_{ref}	0,1 <i>MPa</i>	R_{const}	329,732 <i>MPa</i>

L'inconnue x pour laquelle F(x) s'annule se situe entre 6.10^{-5} et 7.10^{-5} qui se situe bien entre la borne inférieure x_{inf} et la borne supérieure x_{sup} qui vaut dans ce cas précis $1,291310^{-4}$.

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG Date : 25/09/2013 Page : 11/17
Responsable : Sam CUVILLIEZ Clé : R7.01.22 Révision : 11520

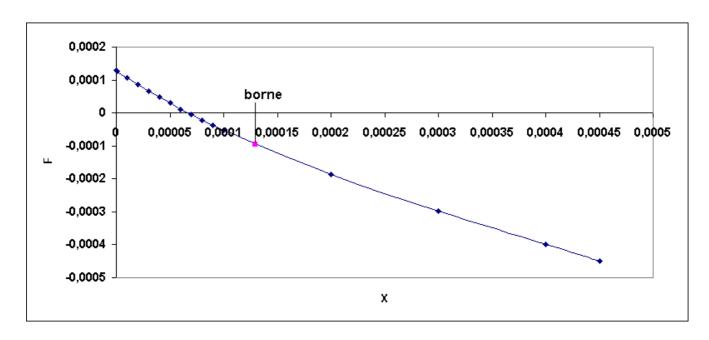


Figure 4-1: Allure de la fonction scalaire

4.3 Opérateur tangent cohérent

On cherche à calculer : $\frac{\partial \sigma}{\partial \varepsilon} = \frac{\partial s}{\partial \varepsilon} + \frac{I}{3} \otimes \frac{\partial I_1}{\partial \varepsilon}$

Avec.

$$\frac{\partial s}{\partial \varepsilon} = \frac{\partial s^{el}}{\partial \varepsilon} \left(1 - \frac{3\mu}{\sigma_{eq}^{el}} \cdot \Delta p \right) + \frac{3\mu}{\left(\sigma_{eq}^{el}\right)^{2}} \cdot \Delta p \left(s^{el} \otimes \frac{\partial \sigma_{eq}^{el}}{\partial \varepsilon} \right) - \frac{3\mu}{\sigma_{eq}^{el}} \cdot \left(s^{el} \otimes \frac{\partial \Delta p}{\partial \varepsilon} \right)$$

$$\frac{\partial I_1}{\partial \varepsilon} = \frac{\partial I_1^{el}}{\partial \varepsilon} - 9K \beta(p) \frac{\partial \Delta p}{\partial \varepsilon}$$

Calcul de
$$\frac{\partial s^{el}}{\partial \epsilon}$$
 :

$$\frac{\partial s^{el}}{\partial \varepsilon} = 2 \mu \left(I_d - \frac{1}{3} 1 \otimes 1 \right)$$

$$\frac{\partial s_{ij}}{\partial \varepsilon_{pq}} = 2 \mu \left(\delta_{ip} \delta_{jq} - \frac{1}{3} \delta_{ij} \delta_{pq} \right)$$

Calcul de
$$\frac{\partial I_1^{el}}{\partial \varepsilon}$$
 :

$$\frac{\partial I_1^{el}}{\partial \varepsilon} = 3K1$$

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG

Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 12/17 Clé : R7.01.22 Révision : 11520

$$\frac{\partial I_1^{el}}{\partial \varepsilon_{pq}} = 3K \delta_{pq}$$

Calcul de $\frac{\partial \sigma_{eq}^{el}}{\partial \varepsilon}$:

$$\frac{\partial \sigma_{eq}^{el}}{\partial \varepsilon} = \frac{\partial \sigma_{eq}^{el}}{\partial \sigma^{el}} \frac{\partial \sigma^{el}}{\partial \varepsilon} = \frac{\partial \sigma_{eq}^{el}}{\partial \varepsilon} \frac{\partial \sigma^{el}}{\partial \varepsilon} = \frac{\partial \sigma_{eq}^{el}}{\partial \sigma^{el}} \frac{\partial \sigma^{el}}{\partial \sigma^{el}} \frac{\partial \sigma^{el}}{\partial \varepsilon} = \frac{3}{2} \frac{s^{el}}{\sigma_{eq}^{el}} \left(I_d - \frac{1}{3} \mathbf{1} \otimes \mathbf{1} \right) D^e = \frac{3}{2} \frac{s^{el}}{\sigma_{eq}^{el}} D^e$$

Calcul de $\frac{\partial \Delta p}{\partial \varepsilon}$:

$$\frac{\Delta p}{\Delta t} = A \left\langle \frac{f(\sigma, p)}{P_{ref}} \right\rangle^{n}$$

$$\operatorname{soit} \ F\left(\Delta\,p\right) = \frac{A\,\Delta\,t}{P_{ref}^{n}} \langle\,f\left(\sigma\,,\,p\right)\rangle^{n} - \Delta\,p$$

$$\frac{\partial \Delta p}{\partial \varepsilon} = \frac{\partial \Delta p}{\partial \sigma^{el}} \frac{\partial \sigma^{el}}{\partial \varepsilon}$$

pour calculer
$$\, \frac{\partial \, \Delta \, p}{\partial \, \sigma^{el}}$$
 , on utilise $\, F\!\left(\sigma^{el}$, $\, p\right) = 0$

$$\frac{\partial F(\sigma^{el}, p)}{\partial \sigma^{el}} \delta \sigma^{el} + \frac{\partial F(\sigma^{el}, p)}{\partial \Delta p} \delta \Delta p = 0$$

$$\frac{\delta \Delta p}{\delta \sigma^{el}} = -\frac{\frac{\partial F(\sigma^{el}, p)}{\partial \sigma^{el}}}{\frac{\partial F(\sigma^{el}, p)}{\partial \Delta p}}$$

$$F(\Delta p) = C \begin{pmatrix} (\sigma_{eq}^{el} + \alpha I_1^{el} - R^-) - (3\mu + R_{const} - \alpha_{const} I_1^{el} + 9k \alpha^- \beta^-) \Delta p \\ - \\ (9k \alpha^- \beta_{const} + 9k \alpha_{const} \beta^-) \Delta p^2 - (9k \alpha_{const} \beta_{const}) \Delta p^3 \end{pmatrix}^n - \Delta p = 0$$

$$\frac{\partial F(\sigma^{el}, p)}{\partial \sigma^{el}} = C.n. \langle f(\sigma^{el}, p) \rangle^{n-1} \frac{\partial f(\sigma^{el}, p)}{\partial \sigma^{el}}$$

$$\mathbf{où} \ \frac{\partial f(\sigma^{el}, p)}{\partial \sigma^{el}} = \left(\frac{\partial \sigma^{el}_{eq}}{\partial \sigma^{el}} + \alpha \frac{\partial I_1^{el}}{\partial \sigma^{el}} \right) + \alpha_{const} \left(\frac{\partial I_1^{el}}{\partial \sigma^{e}} \right) \Delta p$$

$$\frac{\partial F(\sigma^{el}, p)}{\partial \Delta p} = C.n. \langle f(\sigma^{el}, p) \rangle^{n-1} \frac{\partial f(\sigma^{el}, p)}{\partial \Delta p} - 1$$

Date: 25/09/2013 Page: 13/17

Clé: R7.01.22

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG Responsable : Sam CUVILLIEZ

 $\frac{\partial f(\sigma^{el}, p)}{\partial \Delta p} = -\left(3\mu + R_{const} - \alpha_{const} I_1^{el} + 9k\alpha^-\beta^-\right)$ $-2\Delta p 9k \left(\alpha^-\beta_{const} + \alpha_{const}\beta^-\right) - 3\Delta p^2 9k \left(\alpha_{const}\beta_{const}\right)$

Calcul de
$$\frac{\partial\,\sigma_{eq}^{el}}{\partial\,\sigma^{el}}$$
 :

$$\frac{\partial \sigma_{eq}^{el}}{\partial \sigma^{el}} = \frac{\partial \sigma_{eq}^{el}}{\partial s^{el}} \frac{\partial s^{el}}{\partial \sigma^{el}} = \frac{3}{2} \frac{s^{el}}{\sigma_{eq}^{el}} \cdot \left(I_d - \frac{1}{3} \mathbf{1} \otimes \mathbf{1} \right) = \frac{3}{2} \frac{s^{el}}{\sigma_{eq}^{el}}$$

Calcul de
$$\frac{\partial I_1^{el}}{\partial \sigma^{el}}$$
 :

$$\frac{\partial I_1^{el}}{\partial \sigma^{el}} = \frac{\partial tr(\sigma^{el})}{\partial \sigma^{el}} = 1$$

4.1 Données matériaux

Les 16 paramètres du modèle sont :

SOUS ELAS

E : module d'Young (Pa ou MPa)

 ν : coefficient de Poisson

SOUS VISC DRUC PRAG

 P_{ref} : pression de référence (Pa ou MPa)

: paramètre viscoplastique (en s^{-1})

n : puissance de la loi fluage

 R_0 , $R_{\it pic}$ et $R_{\it ult}$: paramètres de la fonction d'écrouissage R(p)

 eta_0 , $eta_{\it pic}$ et $eta_{\it ult}$: paramètres de la fonction de dilatance $eta(\it p)$

4.2 Les variables internes

$$v_1 = p$$
;

 $v_2 = (0 \text{ ou } 1)$; indicateur de plasticité;

 $v_3 = pos$; position du point de charge par rapport au seuils;

$$(pos=1 \text{ si } 0 p_{ult})$$

 $v_{\scriptscriptstyle \it A}$; nombre d'itérations locales ;

Titre: Loi de comportement viscoplastique VISC DRUC PRAG

Date: 25/09/2013 Page: 14/17 Responsable: Sam CUVILLIEZ Clé: R7.01.22 Révision: 11520

4.3 Résumé de l'algorithme de résolution

L'algorithme de résolution tel qu'il est implémenté dans Code Aster :

$$\sigma^{el} = \sigma^- + D^e \Delta \varepsilon$$

Le critère : $f(\sigma^{el}, p^{-}) = \sigma^{el}_{eq} + \alpha(p^{-})I_1^{el} - R(p^{-})$

 $: f(\sigma^{el}, p^{-}) \leq 0 \quad \Delta p = 0 ;$ Élasticité

Viscoplasticité: $f(\sigma^{el}, p^-)=0$ $\Delta p \ge 0$ avec Δp solution de l'équation $F(\Delta p)=0$

où,

$$\frac{\Delta p}{\Delta t} = A \left(\frac{\sigma^{eq} + \alpha(p)I_1 - R(p)}{P_{ref}} \right)^n = \frac{A}{P_{ref}^n} \langle f(\sigma, p) \rangle^n$$

$$F = \frac{A \Delta t}{P_{ref}^{n}} \langle f(\sigma, p) \rangle^{n} - \Delta p$$

Mise à jour des contraintes :

$$\sigma = \sigma^{el} - D^e \Delta \epsilon^{vp}$$

$$s = s^{el} \left(1 - 3 \frac{\mu}{\sigma_{eq}^{el}} \Delta p \right)$$

$$\sigma_{eq} = \sigma_{eq}^{el} - 3G \Delta p$$

$$I_1 = I_1^{el} - 9K \beta \Delta p$$

$$\sigma = s + \frac{I}{3} \otimes I_1$$

Une fois que Δp est calculée, les contraintes et les variables internes mises à jour, on vérifie la position de p par rapport à p^- et le signe de $f(\sigma, p)$:

Si $0 < p^- < p_{pic}$; tester 1) sinon 2) sinon 3)

Si $p_{pic} < p^- < p_{ult}$; tester 2) sinon 3)

Si $p^- > p_{ult}$; tester 3)

Si $p^- + \Delta p < p_{nic}$;

on vérifie $f(\sigma, p) > 0$ avec R, α et β correspondantes à 0 ,si $f(\sigma, p) > 0$ alors on met à jour les champs de contraintes et de variables internes,

sinon, on considère que Δp n'est pas valable et on redécoupe le pas de temps

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG Date : 25/09/2013 Page : 15/17 Responsable : Sam CUVILLIEZ Clé : R7.01.22 Révision : 11520

Si
$$p_{pic} < p^- + \Delta p < p_{ult}$$
;

on vérifie $f(\sigma,p)>0$ avec R, α et β correspondantes à $p_{\it pic}< p< p_{\it ult}$ si $f(\sigma,p)>0$ alors on met à jour les champs de contraintes et de variables internes, sinon, on considère que Δp n'est pas valable et on redécoupe le pas de temps

Si $p^- + \Delta p \ge p_{ult}$;

on vérifie $f(\sigma,p)>0$ avec R, α et β correspondantes à $p\geq p_{ult}$ si $f(\sigma,p)>0$ alors on met à jour les champs de contraintes et de variables internes, sinon, on considère que Δp n'est pas valable et on redécoupe le pas de temps

Titre : Loi de comportement viscoplastique VISC DRUC PRAG

Date: 25/09/2013 Page: 16/17 Responsable: Sam CUVILLIEZ Clé: R7.01.22 Révision: 11520

Résultats d'un essai triaxial 5

Il s'agit de simuler un essai triaxial (voir le cas test ssnv211) en imposant comme une contrainte de confinement de 5 MPa. Une déformation uniaxiale est imposée en compression et qui évolue dans le temps.

La vitesse du chargement est fixée à $10^{-5} \, m/s$. Le déviateur des contraintes et la déformation volumique en fonction de la déformation axiale imposée sont représentées ci contre.

deviateur en fonction de la deformation axiale

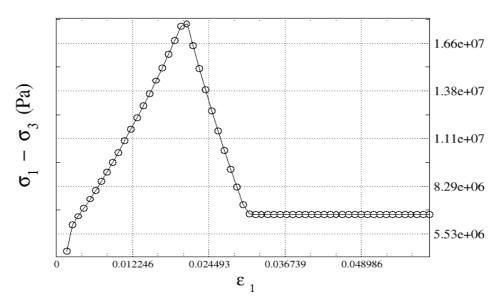


Figure 5-1: Déviateur des contraintes en fonction de la déformation uniaxiale

deformation volumique fonction de la deformation axiale

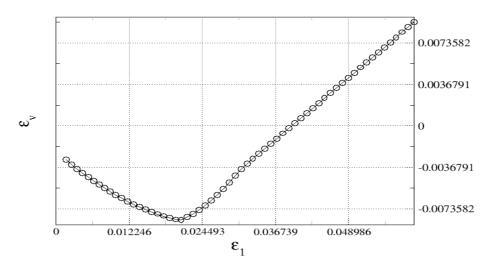


Figure 5-2: Déformation volumique en fonction de la déformation uniaxiale

Titre : Loi de comportement viscoplastique VISC_DRUC_PRAG Date : 25/09/2013 Page : 17/17
Responsable : Sam CUVILLIEZ Clé : R7.01.22 Révision : 11520

6 Fonctionnalités et vérification

La loi de comportement peut être définie par le mot-clé VISC_DRUC_PRAG (commande STAT_NON_LINE, mot clé facteur COMPORTEMENT). Elle est associée au matériau VISC_DRUC_PRAG (commande DEFI MATERIAU).

La loi VISC DRUC PRAG est vérifiée par les cas tests suivants :

SSNV211	[V6.04.211]	Essai triaxial drainé avec le modèle VISC_DRUC_PRAG
WTNV137	[V7.31.137]	Essai triaxial drainé avec le modèle VISC_DRUC_PRAG
WTNV138	[V7.31.138]	Essai triaxial non drainé avec le modèle VISC_DRUC_PRAG

7 Références

- [1] J. EL GHARIB et C. CHAVANT, "Calage sur des essais triaxiaux d'une loi de comportement viscoplastique pour l'argilite basée sur le modèle Drucker_Prager", H-T64-2008-04194-FR,
- [2] J. EL GHARIB et C. CHAVANT, « Mise en oeuvre dans Code_Aster d'un modèle viscoplastique simplifié », H-T64-2007-01800-FR,

8 Descriptif des versions du document

Version Aster	Auteur(s) Organisme(s)	Description des modifications
10.0	J. EL GHARIB, C.CHAVANT EDF R&D / AMA	Texte initial