Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Version

default

Intégration des comportements mécaniques élastoplastiques de Drucker-Prager, associé (DRUCK_PRAGER) et non-associé (DRUCK_PRAG_N_A) et post-traitements

Résumé :

Ce document décrit les principes de plusieurs développements concernant la loi de comportement élastoplastique de Drucker-Prager en version associée (DRUCK_PRAGER) et non-associée (DRUCK_PRAG_N_A).

On s'intéresse d'abord à l'intégration proprement dite de la loi puis, cette loi étant adoucissante, à un indicateur de localisation de Rice et enfin au calcul de sensibilité par différentiation directe pour cette loi. Pour l'intégration de la loi, on utilise un schéma implicite.

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Version

Table des matières

e des Matieres	
1 Introduction	3
2 Intégration de la loi de comportement de Drucker-Prager	3
2.1 Notations	3
2.2 Formulation en version associée	4
2.2.1 Expression du comportement	4
2.2.2 Résolution analytique de la formulation mécanique	5
2.2.3 Calcul de l'opérateur tangent	10
2.3 Formulation en version non-associée	11
2.3.1 Résolution analytique	12
2.3.2 Calcul de l'opérateur tangent	13
2.4 Variables internes des lois Drucker-Prager associée et non associée	14
3 Indicateur de localisation de Rice pour la loi Drucker-Prager	15
3.1 Les différentes façons d'étudier la localisation	15
3.2 Approche théorique	15
3.2.1 Ecriture du problème en vitesse	15
3.2.2 Résultats d'existence et d'unicité, Perte d'ellipticité	16
3.2.3 Résolution analytique pour le cas 2d	<u></u> 16
3.2.4 Calcul des racines	17
4 Calculs de sensibilité	<u></u> 18
4.1 Sensibilité aux données matériaux	18
4.1.1 Le problème direct	18
4.1.2 Le calcul dérivé	18
4.2 Sensibilité au chargement	24
4.2.1 Le problème direct : expression du chargement	24
4.2.2 Le problème dérivé	25
5 Fonctionnalités et vérification	
6 Bibliographie	
7 Description des versions du document	

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 3/33 Clé : R7.01.16 Révision : 11522

1 Introduction

La loi de Drucker-Prager permet de modéliser de façon élémentaire le comportement élasto-plastique du béton ou de certains sols. Par rapport à la plasticité de Von-Mises avec écrouissage isotrope, la différence réside dans la présence d'un terme en $Tr(\boldsymbol{\sigma})$ dans la formulation du seuil et d'une composante sphérique non nulle du tenseur des déformations plastiques.

Dans Code_Aster, la loi existe dans la version associée (DRUCK_PRAGER) et non-associée (DRUCK_PRAG_N_A), plus adaptée pour certains sols parce qu'elle permet de mieux prendre en compte la dilatance.

Cette note regroupe les aspects théoriques de plusieurs développements effectués dans le code autour de cette loi : son intégration selon un schéma implicite en temps, un indicateur de localisation de Rice et le calcul de sensibilité par différentiation directe. On suppose le matériau isotrope. L'indicateur de Rice et le calcul de sensibilité ne fonctionnent pas sous l'hypothèse des contraintes planes.

La théorie et les développements ont été faits pour deux types de fonction d'écrouissage : linéaire et parabolique, cette fonction étant dans tous les cas constante au-delà d'une déformation plastique cumulée « ultime ».

2 Intégration de la loi de comportement de Drucker-Prager

2.1 Notations

Les contraintes mécaniques sont comptées positives en traction, les déformations positives en extension.

и	déplacements du squelette de composantes u_x , u_y , u_z			
$\boldsymbol{\varepsilon} = \frac{1}{2} (\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla}^T \boldsymbol{u})$	tenseur des déformations linéarisées			
$e = \varepsilon - \frac{Tr(\varepsilon)}{3}I$	déviateur des déformations			
$\varepsilon_{v} = Tr(\boldsymbol{\varepsilon})$	trace des déformations: variation de volume			
ε^{p}	Tenseur des déformations plastiques,			
$\varepsilon_{v}^{p} = Tr(\boldsymbol{\varepsilon}^{p})$	variation de volume plastique.			
e^{p}	déviateur des déformations plastiques			
р	déformation plastique cumulée			
σ	Tenseur des contraintes			
$s = \sigma - \frac{Tr(\sigma)}{3}I$	déviateur des contraintes			
$\sigma_{eq} = \sqrt{\frac{3}{2}s \cdot s}$	Contrainte équivalente de Von Mises			
$I_1 = Tr(\bar{\boldsymbol{\sigma}})$	trace des contraintes			
E_0	Module d'Young			
v_0	coefficient de Poisson			
φ	Angle de frottement			
С	Cohésion			
ψ^0	Angle de dilatance initial			
On pose $2\mu = \frac{E_0}{1+\nu_0}$	et $K = \frac{E_0}{3(1-2v_0)}$			

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ
 default

 Date : 25/09/2013
 Page : 4/33

 Clé : R7.01.16
 Révision : 11522

2.2 Formulation en version associée

2.2.1 Expression du comportement

 σ est le tenseur des contraintes, qui ne dépend que de ϵ et son histoire. On considère le critère de type Drücker-Prager :

$$F(\sigma, p) = \sigma_{ea} + AI_{I} - R(p) \le 0$$
 (2.2.1-1)

où A est un coefficient donné et R est une fonction de la déformation plastique cumulée p (fonction d'écrouissage), de type linéaire ou parabolique :

· écrouissage linéaire

$$\begin{array}{ll} R(p) = \sigma_{Y} + h. \ p & \text{si} \quad p \in [0, p_{ultm}] \\ R(p) = \sigma_{Y} + h. \ p_{ultm} & \text{si} \quad p > p_{ultm} \end{array}$$

Les coefficients h, p_{ultm} et σ_{y} sont donnés.

(2.2.1-2)

Version

· écrouissage parabolique

$$\begin{split} & R(p) \!=\! \sigma_Y (1 \!-\! (1 \!-\! \sqrt{\frac{\sigma_{Yultm}}{\sigma_Y}}) \frac{p}{p_{ultm}})^2 & \text{si } p \!\in\! [0, p_{ultm}] \\ & R(p) \!=\! \sigma_{Y_{ultm}} & \text{si } p \!>\! p_{ultm} \end{split}$$

Les coefficients $\sigma_{\rm Yultm}$, $p_{\rm ultm}$ et $\sigma_{\rm Y}$ sont donnés.

(2.2.1-3)

Remarque 1 :

On peut se donner à la place de A et σ_{Y} le coefficient de cohésion c et l'angle de frottement φ :

 $A = \frac{2\sin\varphi}{3-\sin\varphi}$ $\sigma_{Y} = \frac{6\cos\varphi}{3-\sin\varphi}$

Remarque 2 :

On a choisi dans ce document de privilégier la variable p. La déformation plastique cumulée de cisaillement $\chi^{p} = p\sqrt{3/2}$ est également très utilisée en mécanique des sols.

En considérant une version associée on suppose que le potentiel de dissipation suit la même expression que celle de la surface de charge F. L'écoulement plastique se résume alors à :

$$d \boldsymbol{\varepsilon}^{\boldsymbol{p}} = d \lambda \frac{\partial F(\boldsymbol{\sigma}, \boldsymbol{p})}{\partial \boldsymbol{\sigma}}$$
(2.2.1-4)

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

avec :

La loi de normalité par rapport à la force généralisée R donne l'égalité entre l'incrément de déformation plastique cumulée et l'incrément du multiplicateur λ :

$$dp = -d\lambda \frac{\partial F(\boldsymbol{\sigma}, p)}{\partial R} = d\lambda$$
(2.2.1-6)

2.2.2 Résolution analytique de la formulation mécanique

On se place dans ce chapitre dans le cadre d'accroissement fini. L'intégration de la loi suit un schéma implicite pur, et la résolution est analytique. L'incrément fini de déformation $\Delta \epsilon$ est connu et fourni par l'itération de Newton global. On utilise par convention les notations suivantes : un indice – pour désigner une composante en début de pas de chargement, aucun indice pour une composante en fin de pas de chargement, et l'opérateur Δ pour désigner l'accroissement d'une composante. Les équations traduisant le comportement élastique s'écrivent alors :

$$s = s^{-} + 2\mu \left(\Delta e - \Delta e^{p}\right) = s^{e} - 2\mu \Delta e^{p}$$
(2.2.2-1)

$$I_1 = I_1^{-} + 3K \left(\Delta \varepsilon_v - \Delta \varepsilon_v^p \right) = I_1^e - 3K \Delta \varepsilon_v^p$$
(2.2.2-2)

Les équations (2.2.1-4) et (2.2.1-6), compte tenu de la (2.2.1-1), donnent :

$$\Delta \boldsymbol{\varepsilon}^{\boldsymbol{p}} = \Delta p \left(\frac{\partial \sigma_{eq}}{\partial \boldsymbol{\sigma}} + A \frac{\partial I_1}{\partial \boldsymbol{\sigma}} \right) = \Delta p \left(\frac{3}{2} \frac{\boldsymbol{s}}{\sigma_{eq}} + A \boldsymbol{I} \right)$$
(2.2.2-3)

D'où :

$$\Delta \varepsilon_v^p = 3 A \Delta p \tag{2.2.2-4}$$

$$\Delta e^{p} = \frac{3}{2} \frac{\mathbf{s}}{\sigma_{eq}} \Delta p \tag{2.2.2-5}$$

Au cas où l'incrément Δe^{p} soit non nul, l'incrément de déformation plastique cumulée peut s'écrire aussi :

$$\Delta p = \sqrt{\frac{2}{3}} \Delta e^{p} : \Delta e^{p}$$
(2.2.2-6)

En combinant les équations (2.2.2-1) et (2.2.2-5) on trouve :

$$\mathbf{s}\left(1 + \frac{3\mu\Delta p}{\sigma_{eq}}\right) = \mathbf{s}^{\mathbf{e}}$$
(2.2.2-7)

d'où :

$$\sigma_{eq} + 3\,\mu \cdot \Delta \,p = \sigma_{eq}^e \tag{2.2.2-8}$$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Révision : 11522

Date : 25/09/2013 Page : 5/33

Clé : R7.01.16

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 6/33 Clé : R7.01.16 Révision : 11522

Version

default

ce qui conduit à :

$$\mathbf{s}\frac{\sigma_{eq}^{e}}{\sigma_{eq}} = \mathbf{s}^{\mathbf{e}}$$
(2.2.2-9)

En combinant respectivement les équations (2.2.2-7) et (2.2.2-8), et les équations (2.2.2-2) et (2.2.2-4), on obtient :

 $\begin{cases} \mathbf{s} = \mathbf{s}^{\mathbf{e}} \left(1 - \frac{3\mu}{\sigma_{eq}^{e}} \Delta p \right) \\ I_{1} = I_{1}^{e} - 9 \, KA \, \Delta p \end{cases}$ (2.2.2-10)

En réinjectant l'équation sur I_1 et la relation $\sigma_{eq} = \sigma_{eq}^e - 3 \mu \cdot \Delta p$ dans la formulation du seuil, on obtient l'équation scalaire en Δp :

$$\sigma_{eq}^{e} + AI_{I}^{e} - \Delta p (3\mu + 9KA^{2}) - R(p^{-} + \Delta p) = 0$$
(2.2.2-11)

On suppose que : $F(\boldsymbol{\sigma}^{\boldsymbol{e}}$, $p^{-}) \! > \! 0$.

Pour poursuivre la résolution, on doit maintenant distinguer plusieurs cas :

1) Cas où $p^{-}>p_{ultm}$ On a : $R(p^{-}+\Delta p)=R(p^{-})$ L'équation scalaire devient donc : $F(\sigma^{e}, p^{-})-\Delta p(3\mu+9KA^{2})=0$ On trouve :

$$\Delta p = \frac{F(\sigma^{e}, p^{-})}{3\mu + 9 KA^{2}}$$
(2.2.2-12)

- 2) Cas où $p \le p_{ultm}$
 - 2a) Écrouissage linéaire

On a: $R(p + \Delta p) = R(p) + h\Delta p$

L'équation scalaire devient donc : $F(\sigma^e, p^-) - \Delta p(3\mu + 9KA^2 + h) = 0$ On trouve :

$$\Delta p = \frac{F(\sigma^{e}, p^{-})}{3\mu + 9 KA^{2} + h}$$
(2.2.2-13)

2b) Écrouissage parabolique

En exprimant de la même façon $R(p^- + \Delta p)$ en fonction de $R(p^-)$ et de Δp , on trouve que l'équation scalaire s'écrit :

Code Aster

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

$$F(\boldsymbol{\sigma}^{e}, p^{-}) + B\Delta p + G\Delta p^{2} = 0$$

avec :

$$G = -\frac{\sigma_Y}{p_{ultm}^2} \left(1 - \sqrt{\frac{\sigma_{Yultm}}{\sigma_Y}} \right)^2$$
$$B = -3 \,\mu - 9 \,KA^2 + \frac{2 \,\sigma_Y}{p_{ultm}} \left(1 - \sqrt{\frac{\sigma_{Yultm}}{\sigma_Y}} \right) \left(1 - \left(1 - \sqrt{\frac{\sigma_{Yultm}}{\sigma_Y}} \right) \frac{p^-}{p_{ultm}} \right)$$

La seule racine positive du polynôme est :

$$\Delta p = \frac{-B - \sqrt{B^2 - 4G \cdot F(\sigma^e, p^-)}}{2G}$$
(2.2.2-14)

2c) Vérification finale : Cas où $(p + \Delta p) > p_{ultm}$

Dans les deux cas précédents, une fois Δp calculé, il faut vérifier que $p + \Delta p \le p_{ultm}$. Si cette inégalité n'est pas satisfaite, on a alors :

$$R(p + \Delta p) = R(p_{ultm})$$

L'équation scalaire devient donc :

$$F(\boldsymbol{\sigma}^{\boldsymbol{e}}, p_{ultm}) - \Delta p(3 \mu + 9 KA^{2}) = 0$$

$$\Delta p = \frac{F(\boldsymbol{\sigma}^{\boldsymbol{e}}, p_{ultm})}{3 \mu + 9 KA^{2}}$$
(2.2.2-15)

Le principe de la résolution analytique présentée ci-dessus est équivalente à déterminer le point $[I_1, \mathbf{s}]$ comme la projection du point $[I_1^e, \mathbf{s}^e]$ sur le critère (prédiction élastique-correction plastique). Cette méthode vient donc de la loi d'écoulement approximée sur un incrément fini, et peut être représentée par le graphique suivant :

Figure 2.2.2-1: projection sur le critère.

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Révision : 11522

Date : 25/09/2013 Page : 7/33

Clé : R7.01.16

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 8/33 Clé : R7.01.16 Révision : 11522

3) Projection au sommet du cône

L'intégration de la loi sur un incrément Δt fini peut être compliqué quand l'état de contrainte est proche du sommet du cône (voir la Figure 2.2.2-1), a cause du caractère non lisse de la surface critère. Il y a alors deux cas :

- cas d'un état hydrostatique pur,
- cas de projection dans un domaine non-admissible.

Dans le cas particulier d'un <u>état hydrostatique pur</u>, la dérivée de la contrainte de Von Mises σ_{eq} par rapport à σ n'est pas définie. La loi d'écoulement (2.2.2-3) est indéterminée (il y a en effet un cône de normales possibles au critère), et les équations (2.2.2-5), (2.2.2-7), (2.2.2-8), (2.2.2-9) ne peuvent pas être écrites. Il reste la définition de Δp sur la trace des contraintes (équation 2.2.2-4). Comme dans le cas plus général, on doit distinguer plusieurs cas :

1) **Cas où** $p^{-}>p_{ultm}$: $R(p^{-}+\Delta p)=R(p^{-})$ L'équation scalaire avec $\sigma_{eq}=0$ devient : $AI_{1}^{e}-\Delta p\cdot 9KA^{2}=F(\sigma^{e},p^{-})-\Delta p\cdot 9KA^{2}=0$ On trouve :

$$\Delta p = \frac{I_1^e}{9 \, KA} \tag{2.2.2-16}$$

- 2) Cas où $p \le p_{ultm}$
 - 2a) Écrouissage linéaire

On a: $R(p + \Delta p) = R(p) + h\Delta p$

L'équation scalaire avec $\sigma_{eq} = 0$ devient : $A I_1^e - \Delta p \cdot 9 KA^2 - R(p) + h \Delta p = F(\sigma^e, p) - \Delta p \cdot 9 KA^2 = 0$ On trouve alors :

$$\Delta p = \frac{A I_1^e}{9 K A^2 + h}$$
(2.2.2-17)

2b) Écrouissage parabolique

En exprimant $R(p^- + \Delta p)$ en fonction de $R(p^-)$ et de Δp , on trouve encore la solution (2.2.2-14) :

avec la valeur de B modifiée par rapport au cas précédent :

$$B = -9 KA^{2} + \frac{2\sigma_{Y}}{p_{ultm}} \left(1 - \sqrt{\frac{\sigma_{Yultm}}{\sigma_{Y}}} \right) \left(1 - \left(1 - \sqrt{\frac{\sigma_{Yultm}}{\sigma_{Y}}} \right) \frac{p^{-}}{p_{ultm}} \right)$$

2c) Vérification finale : Cas où $(p + \Delta p) > p_{ultm}$

Dans les cas 2a) et 2b), si l'inégalité $p^- + \Delta p \le p_{ultm}$ n'est pas satisfaite, on a :

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 9/33 Clé : R7.01.16 Révision : 11522

 $R(p + \Delta p) = R(p_{ultm})$

L'incrément Δp est donné par l'équation (2.2.2-16).

A cause de la résolution incrémentale, il se peut que la solution trouvée ne soit pas admissible, avec $\sigma_{ea} < 0$. Cela peut arriver quand l'état de contrainte à l'instant t^{-} est proche du sommet du cône.

On choisit alors de projeter l'état de contrainte trouvé par prédiction élastique sur le sommet du cône, soit de se reporter à un état de contrainte purement hydrostatique. On fait un contrôle à posteriori de l'admissibilité de la solution (I_1, \mathbf{s}) , et on apporte éventuellement la correction. Dans les détails :

- i) On actualise l'état de contrainte par le biais des équations (2.2.2-12), (2.2.2-13), (2.2.2-14), (2.2.2-15).
- ii) On contrôle que la solution (I_1, s) trouvée soit admissible, soit que $\sigma_{eq} < 0$ où, de façon équivalente, que I_1 soit à l'intérieur de la surface critère :

$$I_1 \leq \frac{R(p)}{A}$$

- iii) Si cette condition n'est pas vérifiée, on impose la vérification du critère avec $\sigma_{eq} = 0$ (sommet du cône): $I_1 = \frac{R(p)}{A} \Rightarrow A \cdot I_1 R(p) = F(\sigma, R) = 0$
- iv) On reconduit alors la solution aux équations (2.2.2-16), (2.2.2-17), (2.2.2-14).

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 10/33 Clé : R7.01.16 Révision : 11522

2.2.3 Calcul de l'opérateur tangent

2.2.3.1 Calcul global de l'opérateur tangent

On cherche à calculer la matrice cohérente : $\frac{\partial \sigma}{\partial \varepsilon} = \frac{\partial s}{\partial \varepsilon} + \frac{1}{3} \mathbf{I} \otimes \frac{\partial I_1}{\partial \varepsilon}$ En dérivant le système d'équations (2.2-7), on obtient :

$$\begin{cases} \frac{\partial \mathbf{s}}{\partial \boldsymbol{\varepsilon}} = \frac{\partial \mathbf{s}^{\mathbf{e}}}{\partial \boldsymbol{\varepsilon}} \left(1 - 3\frac{\mu}{\sigma_{eq}^{e}} \cdot \Delta p \right) + \frac{3\mu}{\left(\sigma_{eq}^{e}\right)^{2}} \cdot \Delta p \cdot \left(\mathbf{s}^{\mathbf{e}} \otimes \frac{\partial \sigma_{eq}^{e}}{\partial \boldsymbol{\varepsilon}} \right) - \frac{3\mu}{\sigma_{eq}^{e}} \cdot \left(\frac{\mathbf{s}^{\mathbf{e}} \otimes \partial \Delta p}{\partial \boldsymbol{\varepsilon}} \right) \\ \frac{\partial I_{1}}{\partial \boldsymbol{\varepsilon}} = \frac{\partial I_{1}^{e}}{\partial \boldsymbol{\varepsilon}} - 9 KA \frac{\partial \Delta p}{\partial \boldsymbol{\varepsilon}} \end{cases}$$

éq 2.2.3-1

Version

default

Expression de
$$\frac{\partial s^{e}}{\partial \epsilon}$$

$$\frac{\partial s_{ij}^{e}}{\partial \varepsilon_{pq}} = 2 \, \mu \left(\delta_{ip} \, \delta_{jq} - \frac{1}{3} \, \delta_{ij} \, \delta_{pq} \right)$$

Expression de $\frac{\partial I_1^e}{\partial \varepsilon}$

$$\frac{\partial I_1^e}{\partial \varepsilon_{pq}} = 3K \,\delta_{pq}$$

Calcul de $\frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon}$

$$\frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon_{pq}} = \frac{3 \mu}{\sigma_{eq}^{e}} s_{pq}^{e}$$

Calcul de $\frac{\partial \Delta p}{\partial \varepsilon}$

$$\frac{\partial \Delta p}{\partial \varepsilon_{pq}} = -\frac{1}{T(\Delta p)} \cdot \left(\frac{3 \mu}{\sigma_{eq}^{e}} s_{pq}^{e} + 3 AK \delta_{pq}\right)$$

avec :

$$T(\Delta p) = \begin{cases} -(3\mu + 9KA^2) & \text{dans le cas } p^- + \Delta p \ge p_{ultm} & (\text{écrouissage linéaire ou parabolique}) \\ -(3\mu + 9KA^2 + h) & \text{dans le cas } p^- + \Delta p < p_{ultm} & (\text{écrouissage linéaire}) \\ B + 2G\Delta p & \text{dans le cas } p^- + \Delta p < p_{ultm} & (\text{écrouissage parabolique}) \end{cases}$$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 11/33 Clé : R7.01.16 Révision : 11522

où B et G ont la même expression qu'au paragraphe [§2.2].

Expression complète

$$\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} = \left(1 - \frac{3\mu}{\sigma_{eq}^{e}} \Delta p\right) \frac{\partial \boldsymbol{s}^{e}}{\partial \boldsymbol{\varepsilon}} + \left(\frac{3\mu}{\sigma_{eq}^{e}}\right)^{2} \left(\frac{\Delta p}{\sigma_{eq}^{e}} + \frac{1}{T}\right) \boldsymbol{s}^{e} \otimes \boldsymbol{s}^{e} + \frac{9\mu AK}{T\sigma_{eq}^{e}} (\boldsymbol{s}^{e} \otimes \boldsymbol{I} + \boldsymbol{I} \otimes \boldsymbol{s}^{e}) + \left[K + \frac{9K^{2}A^{2}}{T}\right] \boldsymbol{I} \otimes \boldsymbol{I}$$

2.2.3.2 Calcul initial de l'opérateur tangent

On cherche a exprimer $\frac{\partial \sigma^-}{\partial \varepsilon^-}$. Pour cela on va chercher à calculer l'opérateur tangent par un calcul

en vitesse : $\frac{\partial \dot{\sigma}}{\partial \dot{\epsilon}}$.

En partant de l'expression : $\dot{F} = \frac{\partial F}{\partial \sigma} + \frac{\partial F}{\partial p} \dot{p} = 0$ on démontre que :

$$\dot{p} = \frac{3\mu}{\sigma_{eq}D} s \cdot \dot{\varepsilon} + \frac{3AK}{D} \dot{\varepsilon}_{v} \text{ avec } D = 3\mu + 9KA^{2} + \frac{\partial R}{\partial p}$$

Des expressions : $\dot{\mathbf{\sigma}} = \mathbf{H}(\dot{\mathbf{\epsilon}} - \dot{\mathbf{\epsilon}}^p)$ et $\overset{\bullet}{\mathbf{\epsilon}}^p = \overset{\bullet}{p} \frac{\partial \mathbf{F}}{\partial \mathbf{\sigma}}$ on démontre ensuite que :

$$\frac{\partial \dot{\boldsymbol{\sigma}}}{\partial \dot{\boldsymbol{\varepsilon}}} = H - \left(\frac{3\,\mu}{\sigma_{eq}}\,\boldsymbol{s} + 3\,AK\,\boldsymbol{I}\right)\frac{\partial\,\Delta\,p}{\partial\,\boldsymbol{\varepsilon}}$$

qui n'est autre que l'expression de la matrice cohérente du système global du paragraphe précédent où $\varDelta p = 0$.

2.3 Formulation en version non-associée

La version non-associée de la loi Drucker-Prager introduite dans Code_Aster n'a pas pour prétention de modéliser finement un comportement physique réaliste. Le but est de représenter le plus simplement possible une physique (grossièrement) réaliste, notamment dans le cas de la mécanique des sols pour laquelle l'angle de dilatance varie avec la déformation plastique.

Le potentiel plastique se différencie donc de la surface de charge dans cette nouvelle formulation. L'intégration numérique a été introduite uniquement pour l'expression du comportement à écrouissage parabolique.

Le potentiel plastique est le suivant : $G(\mathbf{\sigma}, p) = \sigma_{ea} + \beta(p)I_1$

où $\beta(p)$ est une fonction qui décroît linéairement avec l'évolution de la déformation plastique suivant la relation

$$\beta(p) = \begin{cases} \beta(\psi^0) \left(1 - \frac{p}{p_{ult}}\right) & \text{si } p \in [0, p_{ult}] \\ 0 & \text{si } p > p_{ult} \end{cases}$$

Manuel de référence

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 12/33 Clé : R7.01.16 Révision : 11522

où
$$\Psi^{0}$$
 désigne l'angle de dilatance initial et $\beta(\psi^{0}) = \frac{2\sin(\psi^{0})}{3-\sin(\psi^{0})}$.

L'écoulement plastique s'écrit à présent

1

$$d \varepsilon_{ij}^{p} = dp \frac{\partial G(\boldsymbol{\sigma}, p)}{\partial \sigma}$$

sachant que l'on a toujours le critère définissant la surface de charge : $F(\sigma, p) = \sigma_{eq} + AI_I - R(p) \le 0$

2.3.1 Résolution analytique

La méthode de résolution étant analogue à celle du chapitre 2.2.2 on rappelle ci-dessous uniquement les expressions des nouvelles équations

$$\begin{cases} \Delta e_{ij}^{p} = \frac{3}{2} \frac{s_{ij}}{\sigma_{eq}} \Delta p \\ \Delta \varepsilon_{V}^{p} = 3 \beta(p) \Delta p \\ \\ s_{ij} = s_{ij}^{e} \left(1 - 3\mu \frac{\Delta p}{\sigma_{eq}^{e}} \right) \\ I_{1} = I_{1}^{e} - 9 \mathrm{K} \beta(p) \Delta p \end{cases}$$

2.3.1.1 Cas où $p^- > p_{ult}$

$$\Delta p = \frac{F(\sigma^e, p^{-})}{3\mu}$$

2.3.1.2 Cas où $p^- \le p_{ult}$

Dans ce cas Δp est solution d'une équation polynomiale du second ordre dont les racines vont dépendre de l'incrément de déformation et des données caractérisant les paramètres matériaux. Le polynôme en question est le suivant

$$F(\sigma^e, p^-) + C^1 \varDelta p + C^2 \varDelta p^2 = 0$$

où $F(\sigma^e$, $p^-)\!>\!0$, et les deux constantes $\,C^1\,$ et $\,C^2\,$ sont définies par

$$C^{1} = -3\mu - 9KA\beta(p^{-}) + 2\frac{\sigma_{Y}}{p_{ult}} \left(1 - \left(1 - \sqrt{\frac{\sigma_{Yult}}{\sigma_{Y}}}\right)\frac{p^{-}}{p_{ult}}\right) \left(1 - \sqrt{\frac{\sigma_{Yult}}{\sigma_{Y}}}\right)$$
$$C^{2} = -\frac{\sigma_{Y}}{p_{ult}^{2}} \left(1 - \sqrt{\frac{\sigma_{Yult}}{\sigma_{Y}}}\right)^{2} + 9AK\frac{\beta(\psi^{0})}{p_{ult}}$$

La racine Δp est alors caractérisée selon le code suivant :

Manuel de référence

Version default

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 13/33 Clé : R7.01.16 Révision : 11522

Version

default

1/ si
$$C^2 < 0$$
 alors $\Delta p = \frac{-C^1 - \sqrt{(C^1)^2 - 4F(\mathbf{\sigma}^e, p^-)C^2}}{2C^2}$

2/ si $C^2 > 0$ et $F(\sigma^e, p^-) > \frac{(C^1)^2}{4C^2}$ alors il n'y a pas de solution. Un redécoupage du pas de temps

est possible si la demande a été faite dans la commande ${\tt STAT_NON_LINE}.$

3/ si
$$C^2 > 0$$
 et $F(\mathbf{\sigma}^e, p^-) < \frac{(C^1)^2}{4C^2}$ et $C^1 < 0$ alors le polynôme admet deux solutions. On choisit la

plus petite positive d'entre elles. $\Delta p = \frac{-C^1 - \sqrt{(C^1)^2 - 4F(\mathbf{\sigma}^e, p^-)C^2}}{2C^2}$

4/ si $C^2 > 0$ et $F(\sigma^e, p^-) < \frac{(C^1)^2}{4C^2}$ et $C^1 > 0$ alors il n'y a pas de solution. Un redécoupage du pas de temps set possible si la demonde a été foite dans la commande CERTE NON LENTE

de temps est possible si la demande a été faite dans la commande STAT_NON_LINE.

2.3.2 Calcul de l'opérateur tangent

La formulation est très peu modifiée par rapport au cas associé : les équations 2.2.3-1 deviennent :

$$\begin{vmatrix} \frac{\partial s}{\partial \varepsilon} = \frac{\partial s^{e}}{\partial \varepsilon} \left(1 - \frac{3\mu}{\sigma_{eq}^{e}} \cdot \Delta p \right) + \frac{3\mu}{\left(\sigma_{eq}^{e}\right)^{2}} \cdot \Delta p \cdot \left(s^{e} \otimes \frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon} \right) - \frac{3\mu}{\sigma_{eq}^{e}} \cdot \left(s^{e} \otimes \frac{\partial \Delta p}{\partial \varepsilon} \right) \\ \frac{\partial I_{1}}{\partial \varepsilon} = \frac{\partial I_{1}^{e}}{\partial \varepsilon} - 9K \left(\beta - \frac{\beta (\Psi^{0}) \Delta p}{p_{ult}} \right) \frac{\partial \Delta p}{\partial \varepsilon}$$

2.3.2.1 Expression de $\frac{\partial S_{ij}}{\partial \varepsilon_{pq}}$

$$\frac{\partial s_{ij}^{e}}{\partial \epsilon_{pq}} = 2\mu \left(\delta_{ip} \delta_{jq} - \frac{1}{3} \delta_{ij} \delta_{pq} \right)$$

2.3.2.2 Expression de $\frac{\partial I_1^e}{\partial \epsilon_{pq}}$

$$\frac{\partial I_1^e}{\partial \varepsilon_{pq}} = 3K\delta_{pq}$$

2.3.2.3 Calcul de $\frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon_{pq}}$

$$\frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon_{pq}} = \frac{3\mu}{\sigma_{eq}^{e}} s_{pq}^{e}$$
2.3.2.4 Calcul de $\frac{\partial \Delta p}{\partial \varepsilon_{pq}}$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

 $\frac{\partial \Delta p}{\partial \varepsilon_{pq}} = -\frac{1}{T \left(\Delta p \right)}$

 default

 Date : 25/09/2013
 Page : 14/33

 Clé : R7.01.16
 Révision : 11522

Version

avec :

$$T(\Delta p) = \begin{cases} -3\mu & \text{si } p^- + \Delta p \ge p_{ull} \\ C^1 + 2C^2 \Delta p & \text{si } p^- + \Delta p < p_{ull} \end{cases}$$

 $\frac{3\mu}{\sigma^e}s^e_{pq} + 3AK\delta_{pq}$

où C^1 et C^2 sont des constantes définies au paragraphe 2.3.

2.3.2.5 Expression complète

$$\frac{\partial \mathbf{\sigma}}{\partial \mathbf{\varepsilon}} = \frac{\partial \mathbf{s}}{\partial \mathbf{\varepsilon}} + \frac{1}{3} \cdot \mathbf{I} \otimes \frac{\partial I_1}{\partial \mathbf{\varepsilon}}$$
$$\left| \frac{\partial \mathbf{s}}{\partial \mathbf{\varepsilon}} = \frac{\partial \mathbf{s}^e}{\partial \mathbf{\varepsilon}} \left(1 - \frac{3\mu}{\sigma_{eq}^e} \cdot \Delta p \right) + \frac{3\mu}{\left(\sigma_{eq}^e\right)^2} \cdot \Delta p \cdot \left(\mathbf{s}^e \otimes \frac{\partial \sigma_{eq}^e}{\partial \mathbf{\varepsilon}} \right) - \frac{3\mu}{\sigma_{eq}^e} \cdot \left(\mathbf{s}^e \otimes \frac{\partial \Delta p}{\partial \mathbf{\varepsilon}} \right) \right.$$
$$\left| \frac{\partial I_1}{\partial \mathbf{\varepsilon}} = \frac{\partial I_1^e}{\partial \mathbf{\varepsilon}} - 9K \left(\beta - \frac{\beta (\Psi^0) \Delta p}{p_{ult}} \right) \frac{\partial \Delta p}{\partial \mathbf{\varepsilon}}$$

$$\frac{\partial \sigma_{ij}}{\partial \varepsilon_{pq}} = \left(1 - \frac{3\mu}{\sigma_{eq}^{e}} \Delta p\right) \cdot \frac{\partial s_{ij}^{e}}{\partial \varepsilon_{pq}} + \frac{1}{3} \frac{\partial I_{1}^{e}}{\partial \varepsilon_{pq}} \delta_{ij} + \frac{\partial \sigma_{eq}^{e}}{\partial \varepsilon_{pq}} \left(\frac{3\mu}{\left(\sigma_{eq}^{e}\right)^{2}} s_{ij}^{e} \Delta p\right) + \frac{\partial \Delta p}{\partial \varepsilon_{pq}} \left(-3\mu \frac{s_{ij}^{e}}{\sigma_{eq}^{e}} - 3K\beta(p)\delta_{ij} + 3K \frac{\beta(\psi^{0})}{p_{ult}} \Delta p\delta_{ij}\right)$$

2.4 Variables internes des lois Drucker-Prager associée et non associée

Ces modèles comportent 3 variables internes :

- V1 est la déformation déviatorique plastique cumulée p
- V2 est la déformation volumique plastique cumulée $\sum \Delta \varepsilon_V^p$
- $V\!3\,$ est l'indicateur d'état (1 si $\,\varDelta\,p\!>\!0\,$, 0 dans le cas contraire).

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ /ersion default

3 Indicateur de localisation de Rice pour la loi Drucker-Prager

On définit l'indicateur de localisation du critère de Rice dans le cadre de la loi de comportement Drucker-Prager. Mais la définition d'un indicateur de localisation peut-être utilisé, de façon plus générale, dans des études en mécanique de la rupture, mécanique de l'endommagement, théorie de la bifurcation, mécanique des sols et mécanique des roches (et plus globalement dans le cadre des matériaux à loi de comportement adoucissante).

Cet indicateur défini un état à partir duquel l'évolution du système mécanique étudié (équations, d'équilibre, loi de comportement) peut perdre son caractère d'unicité. Cette théorie permet, en d'autres termes :

- 1 le calcul de l'état d'initiation possible de la localisation qui est perçu comme la limite de validité des calculs par éléments finis classiques ;
- 2 la détermination « qualitative » des angles d'orientation des zones de localisation.

Le critère de localisation constitue une limite de fiabilité des calculs par éléments finis « classiques ».

3.1 Les différentes façons d'étudier la localisation

Dans le cadre des études menées en mécanique des sols, on a constaté une forte dépendance de la solution numérique en fonction de la discrétisation par éléments finis. Il apparaît une concentration de valeurs élevées des déformations plastiques cumulées au niveau des éléments finis et on note que cette « zone de localisation » change brutalement avec le raffinement du maillage. Ce phénomène de localisation est source de problèmes numériques et engendre des problèmes de convergences au sens des éléments finis.

La localisation peut être interprétée comme un phénomène instable, précurseur de mécanisme de rupture, caractérisant certains types de matériaux sollicités dans le domaine inélastique. Pour étudier les instabilités liées à la localisation on distingue, d'une part, les classes de matériaux à comportement dépendant du temps et d'autre part, celles ne dépendant pas du temps. Pour les matériaux à comportement indépendant du temps, l'approche communément utilisée est la méthode dite par bifurcation (c'est à cette méthode que l'on s'intéresse dans cette note). Elle consiste à analyser les pertes d'unicité du problème en vitesses. Pour les matériaux à comportement dépendant du temps, l'unicité du problème en vitesses est souvent garantie et ceci n'empêche pas l'observation des instabilités lors de leur déformation. Pour ces matériaux, on doit alors avoir recours à d'autres approches. La plus couramment utilisée est l'approche par perturbation. Cette approche ne sera pas traitée dans cette note, mais pour plus d'informations consulter les notes [bib1], [bib2].

Rudnicki et Rice [bib3] ont démontré que l'étude de la localisation des déformations en mécanique des roches s'inscrit dans le cadre de la théorie de la bifurcation. Celle-ci est basée sur la notion d'équilibre instable. Rice [bib4] considère que le point de bifurcation marque la fin du régime stable. Le début de la localisation est associé à une instabilité rhéologique du système et cette instabilité correspond localement à la perte d'ellipticité des équations qui gouvernent l'équilibre incrémental continu en vitesses. Rice propose ainsi un critère dit de « bifurcation par localisation » qui permet de détecter l'état à partir duquel, la solution des équations mathématiques qui gouvernent le problème aux limites considérées et l'évolution du système mécanique étudié (équations, d'équilibre, loi de comportement) perdent leur caractère d'unicité. Cette théorie permet le calcul de l'état d'initiation de la localisation qui est perçu comme la limite de validité des calculs par éléments finis classiques.

3.2 Approche théorique

3.2.1 Ecriture du problème en vitesse

On considère une structure occupant, à un instant t, l'ouvert Ω de \Re^3 . Le problème en vitesse consiste à trouver le champ des vitesses de déplacements v lorsque la structure est soumise aux vitesses de forces volumiques \dot{f}_d , aux vitesses de déplacements imposés v_d sur une partie $\partial_1 \Omega$ de la frontière et aux vitesses d'efforts surfaciques \dot{F}_d sur la partie complémentaire $\partial_2 \Omega$.

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Dans l'écriture locale du problème, le champ des vitesses de déplacements v doit ainsi vérifier le problème :

1
$$v$$
 suffisamment régulier et $v = v_d$ sur $\partial_1 \Omega$

2 Les équations d'équilibre :

$$\operatorname{div}[\mathbf{L}:\boldsymbol{\varepsilon}(v)] + \mathbf{f}_d = 0 \text{ sur } \Omega$$

$$\mathbf{L}:\boldsymbol{\varepsilon}(\boldsymbol{v}).\,\mathbf{n}=\mathbf{F}_d \text{ sur } \partial_2\boldsymbol{\Omega}$$

n étant la normale unitaire sortante à $\partial_2 \Omega$.

•Les conditions de compatibilité (on se limite ici aux petites perturbations) :

$$\mathbf{\epsilon}(\mathbf{v}) = \frac{1}{2} \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right]$$

où l'opérateur $\,L\,$ est défini de façon générale pour les lois de comportement écrites sous forme incrémentale par la relation :

$$\dot{\boldsymbol{\sigma}} = \mathbf{L}(\boldsymbol{\varepsilon}, \mathbf{V}) : \dot{\boldsymbol{\varepsilon}}$$

avec :

$$\mathbf{L} = \begin{cases} \mathbf{E} & \text{si } F < 0 \text{ ou } F = 0 \text{ et } \frac{\mathbf{b} \cdot \mathbf{E} \cdot \dot{\mathbf{\epsilon}}}{h} \le 0 \\ \mathbf{H} = & \mathbf{E} - \frac{(\mathbf{E} \cdot \mathbf{a}) \otimes (\mathbf{b} \cdot \mathbf{E})}{h} & \text{si } F = 0 \text{ et } \frac{\mathbf{b} \cdot \mathbf{E} \cdot \dot{\mathbf{\epsilon}}}{h} > 0 \end{cases}$$

où σ est la contrainte, ϵ la déformation totale, V un ensemble de variables internes et F la surface seuil de plasticité. Les expressions de a, b, E et h dépendent de la formulation de la loi de comportement.

3.2.2 Résultats d'existence et d'unicité, Perte d'ellipticité

Nous donnons dans ce chapitre quelques résultats sans démonstrations. La référence pour ces démonstrations est toutefois spécifiée.

Une condition suffisante d'existence et d'unicité du problème précédent est : $\dot{\sigma}$: $\dot{\epsilon} > 0$. Cette inégalité peut être interprétée comme une définition, dans le cas tridimensionnel, du non-adoucissement. La démonstration est faite par Hill [bib5] pour les matériaux standards et par Benallal [bib1] pour les matériaux non-standards.

La perte d'ellipticité correspond à l'instant pour lequel l'opérateur N.H.N devient singulier pour une direction N en un point de la structure. Cette condition est équivalente à la condition : det(N.H.N)=0. Il s'agit de la condition de «bifurcation continue»¹ au sens de Rice aussi appelé tenseur acoustique. Rice et Rudnicki [bib3] montrent que cette condition de perte d'ellipticité du problème local en vitesse est une condition nécessaire à la bifurcation « continue ou discontinue »² pour le solide. Les conditions aux limites ne jouent aucun rôle, seule la loi de comportement définit les conditions de localisation (seuil de localisation et orientation de la surface de localisation.

Les bifurcations continues fournissent ainsi la limite inférieure de la gamme de déformation pour laquelle les bifurcations discontinues peuvent se produire.

3.2.3 Résolution analytique pour le cas 2d.

On pose $N = (N_1, N_2, 0)$ avec $N_1^2 + N_2^2 = 1$

2 Dans une bifurcation discontinue, on a de part et d'autre de la bande une continuité du déplacement mais on n'a pas le même comportement. Une décharge élastique se produit à l'extérieure de la zone de localisation, tandis qu'un chargement et une déformation élasto-plastique continue se produisent à l'intérieur.

Date : 25/09/2013 Page : 16/33 Clé : R7.01.16 Révision : 11522

¹ Dans une bifurcation continue, une déformation plastique se produit à l'intérieur et à l'extérieur de la zone de localisation et on a une même loi de comportement à l'intérieur et à l'extérieur de la bande.

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 17/33 Clé : R7.01.16 Révision : 11522

Version default

On a alors :
$$\mathbf{N.H.N} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & C \end{bmatrix}$$
 où Ortiz [bib6] montre que :

$$\begin{split} C &= N_1^2 H_{1313} + N_2^2 H_{2323} > 0 \\ A_{11} &= N_1^2 H_{1111} + N_1 N_2 (H_{1112} + H_{1211}) + N_2^2 H_{1212} \\ A_{22} &= N_1^2 H_{1212} + N_1 N_2 (H_{1222} + H_{2212}) + N_2^2 H_{2222} \\ A_{12} &= N_1^2 H_{1112} + N_1 N_2 (H_{1122} + H_{1212}) + N_2^2 H_{1222} \\ A_{21} &= N_1^2 H_{1211} + N_1 N_2 (H_{1212} + H_{2211}) + N_2^2 H_{2212} \end{split}$$

Il suffit ainsi d'étudier le signe de det(A) comme précisé par Doghri [bib7] :

$$\det(A) = a_0 N_1^4 + a_1 N_1^3 N_2 + a_2 N_1^2 N_2^2 + a_3 N_1 N_2^3 + a_4 N_2^4$$

avec: $a_0 = H_{1111} H_{1212} - H_{1112} H_{1211}$ $a_1 = H_{1111} (H_{1222} + H_{2212}) - H_{1112} H_{2211} - H_{1122} H_{1211}$ $a_2 = H_{1111} H_{2222} + H_{1112} H_{1222} + H_{1211} H_{2212} - H_{1122} H_{1212} - H_{1122} H_{2211} - H_{1212} H_{2211}$ $a_3 = H_{2222} (H_{1112} + H_{1211}) - H_{1122} H_{2212} - H_{1222} H_{2211}$ $a_4 = H_{1212} H_{2222} - H_{1222} H_{2212}$

On pose alors $N_1 = \cos \theta$ et $N_2 = \sin \theta$ avec $\theta \in \left] -\frac{\pi}{2}; +\frac{\pi}{2} \right]$. On distingue alors deux cas :

•si
$$\theta = +\frac{\pi}{2}$$
 alors det $(A) = 0$ si $a_4 = 0$;
•si $\theta \neq +\frac{\pi}{2}$ alors det $(A) = 0$ si $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = 0$ avec $x = \tan \theta$.

3.2.4 Calcul des racines

Pour résoudre un polynôme de degré n (comme celui défini ci-dessus, où n=4) on propose d'utiliser la méthode dite « Companion Matrix Polynomial ». Le principe de cette méthode consiste à chercher les valeurs propres de la matrice (de type Hessenberg) d'ordre n associée au polynôme. Si l'on considère le polynôme $P(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_kx^k + \ldots + a_1x + a_0$. Chercher les racines de ce polynôme revient à chercher les valeurs propres de la matrice :

[0	0	0	0	0	$-a_0$
1	0	0	0	0	$-a_1$
0	1	0	0	0	
0	0	1	0	0	-a _k
0	0	0	1	0	
0	0	0	0	1	$-a_{n-1}$

Cet indicateur est calculé par l'option INDL_ELGA de CALC_CHAMP [U4.81.04]. Il produit en chaque point d'intégration 5 composantes : la première est l'indicateur de localisation valant 0 si det(N.H.N) > 0 (pas de localisation), et valant 1 sinon, ce qui correspond a une possibilité de localisation. Les autres composantes fournissent les directions de localisation.

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Version

4.1.1-1

4 Calculs de sensibilité

L'analyse de sensibilité porte uniquement sur la version associée de la formulation décrite au chapitre 2.2.

4.1 Sensibilité aux données matériaux

4.1.1 Le problème direct

Nous nous plaçons dans cette partie dans le cadre de la résolution de calculs non-linéaires. Dans *Code_Aster*, tout calcul statique non-linéaire est résolu incrémentalement. Il nécessite donc à chaque pas de charge $i \in \{1, I\}$ la résolution du système d'équation non-linéaire :

$$\begin{aligned} R(u_i, t_i) + B^t \lambda_i = L_i \\ \mathbf{B} \mathbf{u}_i = u_i^d \end{aligned}$$

avec

$$(\mathbf{R}(\mathbf{u}_{i}, t_{i}))_{k} = \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}_{i}) : \boldsymbol{\varepsilon}(\mathbf{w}_{k}) d\Omega$$
 éq
4.1.1-2

• $\mathbf{W}_{\mathbf{k}}$ est la fonction de forme du $k^{\text{ième}}$ degré de liberté de la structure modélisée,

• $(\mathbf{R}(\mathbf{u}_{i}, t_{i}))$ est le vecteur des forces nodales.

La résolution de ce système se fait par la méthode de Newton-Raphson :

$$\begin{cases} \mathbf{K}_{i}^{n} \delta \mathbf{u}_{i}^{n+1} + \mathbf{B}^{t} \delta \lambda_{i}^{n+1} &= \mathbf{L}_{i} - \mathbf{R}(\mathbf{u}_{i}^{n}, t_{i}) + \mathbf{B}^{t} \lambda_{i}^{n} \\ \mathbf{B} \delta u_{i}^{n+1} &= -\mathbf{B} u_{i-1}^{n} \end{cases}$$
 éq 4.1.1-3

où $\mathbf{K}_{i}^{n} = \frac{\partial \mathbf{R}}{\partial \mathbf{u}}|_{(u_{i}^{n}, t_{i})}$ est la matrice tangente au pas de charge i et à l'itération de Newton n.

La solution est donc donnée par :

$$\begin{cases} \mathbf{u}_{i} = \mathbf{u}_{i-1} + \sum_{n=0}^{N} \delta \mathbf{u}_{i}^{n} \\ \lambda_{i} = \lambda_{i-1} + \sum_{n=0}^{N} \delta \lambda_{i}^{n} \end{cases}$$

éq 4.1.1-4

avec $\,N\,$, le nombre d'itérations de Newton qui a été nécessaire pour atteindre la convergence.

4.1.2 Le calcul dérivé

4.1.2.1 Préliminaires

Dans le cadre du calcul de sensibilité, il est nécessaire d'insister sur les dépendances d'une grandeur par rapport aux autres. Nous allons ainsi expliciter que les résultats du calcul précédent dépendent

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 19/33 Clé : R7.01.16 Révision : 11522

d'un paramètre Φ donné (module d'Young, limite d'élasticité, masse volumique, ...) et cela de la manière suivante :

$$u_i = u_i(\Phi)$$
, $\lambda_i = \lambda_i(\Phi)$

Mais cela n'est pas suffisant. Aussi nous plaçons-nous dans le cadre d'un calcul incrémental avec loi de comportement de type Drucker-Prager.. Si l'on considère les inter-dépendances des paramètres à un niveau algorithmique, on peut écrire :

$$\begin{split} &\mathbf{R} = \mathbf{R}(\boldsymbol{\sigma}_{i-1}(\boldsymbol{\Phi}), p_{i-1}(\boldsymbol{\Phi}), \boldsymbol{\Delta} \mathbf{u}(\boldsymbol{\Phi})) \\ &\boldsymbol{\sigma}_{i} = \boldsymbol{\sigma}_{i-1}(\boldsymbol{\Phi}) + \boldsymbol{\Delta} \boldsymbol{\sigma}(\boldsymbol{\sigma}_{i-1}(\boldsymbol{\Phi}), p_{i-1}(\boldsymbol{\Phi}), \boldsymbol{\Delta} \mathbf{u}(\boldsymbol{\Phi}), \boldsymbol{\Phi}) \\ &p_{i} = p_{i-1}(\boldsymbol{\Phi}) + \boldsymbol{\Delta} p(\boldsymbol{\sigma}_{i-1}(\boldsymbol{\Phi}), p_{i-1}(\boldsymbol{\Phi}), \boldsymbol{\Delta} \mathbf{u}(\boldsymbol{\Phi}), \boldsymbol{\Phi}) \end{split}$$

Où $\Delta \mathbf{u}$ est l'incrément de déplacement à convergence au pas de charge i.

Précisons le sens des notations que nous utiliserons pour les dérivées :

•
$$\frac{\partial X}{\partial Y}$$
 désigne la dérivée partielle **explicite** de *X* par rapport à *Y*,

• X, $_{Y}$ désigne la variation **totale** de X par rapport à Y.

4.1.2.2 Dérivation de l'équilibre

Compte tenu des remarques précédentes, exprimons la variation totale de [éq 2.1-1] par rapport à Φ :

$$\begin{cases} \frac{\partial \mathbf{R}}{\partial \Phi} + \frac{\partial \mathbf{R}}{\partial \Delta \mathbf{u}} \cdot \Delta \mathbf{u}_{,\Phi} + \frac{\partial \mathbf{R}}{\partial \sigma_{i-1}} \cdot \sigma_{i-1}_{,\Phi} + \frac{\partial \mathbf{R}}{\partial p_{i-1}} \cdot p_{i-1}_{,\Phi} + \mathbf{B}^{t} \boldsymbol{\lambda}_{i}_{,\Phi} = 0 \\ \mathbf{B} \Delta \mathbf{u}_{,\Phi} = -\mathbf{B} \mathbf{u}_{i-1,\Phi} \end{cases}$$
 éq 4.1.2.2-1

Remarquons qu'ici $\frac{\partial \mathbf{R}}{\partial \Phi} = 0$: **R** ne dépend pas explicitement de Φ mais implicitement comme nous le verrons en détail dans la suite.

Soit :

$$\begin{cases} \mathbf{K}_{i}^{N} \Delta \mathbf{u}_{,\Phi} + \mathbf{B}^{t} \boldsymbol{\lambda}_{i}_{,\Phi} &= -\mathbf{R}_{,\Phi} \Big|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\Phi)} \\ \mathbf{B} \Delta \mathbf{u}_{,\Phi} &= -\mathbf{B} \mathbf{u}_{i-1,\Phi} \end{cases}$$
éq 4.1.2.2-2

Où

- \mathbf{K}_{i}^{N} est la dernière matrice tangente utilisée pour atteindre la convergence dans les itérations de Newton,
- $\mathbf{R}_{,\phi}|_{\Delta u \neq \Delta u(\phi)}$ est la variation totale de \mathbf{R} , sans tenir compte de la dépendance de $\Delta \mathbf{u}$ par rapport à $\mathbf{\Phi}$.

Le problème réside maintenant dans le calcul de $\mathbf{R}_{,\phi}|_{Au \neq Au(\phi)}$.

Remarque :

Manuel de référence

Version default

Révision : 11522

Date : 25/09/2013 Page : 20/33

Clé : R7.01.16

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Dans [éq 4.1.2.2-2], on a utilisé le fait que $\mathbf{K}_{i}^{N} = \frac{\partial \mathbf{R}(\mathbf{u}_{i}, t_{i})}{\partial \Delta \mathbf{u}}$ alors que dans [éq 4.1.1-3] on l'a défini par $\mathbf{K}_{i}^{N} = \frac{\partial \mathbf{R}(\mathbf{u}_{i}, t_{i})}{\partial \mathbf{u}_{i}^{N}}$. On a bien équivalence de ces deux définitions dans la mesure où $\mathbf{u}_{i} = \mathbf{u}_{i-1} + \Delta \mathbf{u}$ et que \mathbf{R} dépend effectivement de $\Delta \mathbf{u}$ (et aussi bien sûr de $\boldsymbol{\sigma}_{i-1}$ et p_{i-1}).

Remarque :

Si on dérive par rapport à Φ directement [éq 4.1.1-3], on trouve $\mathbf{K}^{n} = \frac{\partial \mathbf{u}^{n+1}}{\partial \Phi} + \mathbf{B}^{t} \lambda, \Phi = -\mathbf{R}_{,\Phi/\Delta \mathbf{u} \neq \Delta \mathbf{u}/\Phi} - \mathbf{K}^{n}_{,\Phi} \delta \mathbf{u}^{n+1}$. Ce qui est la même chose à convergence et fait apparaître que l'erreur sur $\frac{\partial \mathbf{u}}{\partial \Phi}$ dépend de $\mathbf{K}^{-1}\mathbf{K}_{,\phi}$.

4.1.2.3 Calcul de la dérivée de la loi de comportement

Dans la suite, par souci de clarté, nous abandonnerons les indices i-1. D'après [éq 4.1.1-2], on peut réécrire $\mathbf{R}_{,\phi}|_{\mathcal{A} \neq \mathcal{A} u(\phi)}$ sous la forme :

$$\mathbf{R}_{,\phi}|_{\Delta u \neq \Delta u(\phi)} = \int_{\Omega} \left(\boldsymbol{\sigma}_{,\phi} + \Delta \boldsymbol{\sigma}_{,\phi} |_{\Delta u \neq \Delta u(\phi)} \right) : \boldsymbol{\varepsilon}(\mathbf{w}_{\mathbf{k}}) d\Omega \qquad \text{éq 4.1.2.3-1}$$

On doit donc calculer $\Delta \sigma$, $_{\phi}|_{_{_{_{u\neq\Delta u}(\phi)}}}$. Pour ce faire, nous allons utiliser les expressions qui interviennent dans l'intégration numérique de la loi de comportement.

4.1.2.4 Cas de l'élasticité linéaire

Dans le cadre de l'élasticité linéaire, la loi de comportement s'exprime par :

$$\begin{cases} \varDelta \,\tilde{\boldsymbol{\sigma}} = 2\mu \,.\, \tilde{\boldsymbol{\varepsilon}} \,(\varDelta \,\mathbf{u} \,) \\ Tr(\varDelta \,\boldsymbol{\sigma}) = 3K \,.\, Tr(\boldsymbol{\varepsilon}(\varDelta \,\mathbf{u} \,)) \end{cases}$$

ou bien :

$$\Delta \sigma = 2\mu . \tilde{\epsilon} (\Delta \mathbf{u}) + K . Tr(\epsilon(\Delta \mathbf{u})).$$
 Id

ég 4.1.2.4-1

où Id est le tenseur identité d'ordre 2.

Alors, en calculant la variation totale de [éq 4.1.2.4-1] par rapport à $\Phi_{.}$ on obtient :

$$\Delta \sigma_{,\phi} = 2\mu_{,\phi} \cdot \tilde{\epsilon}(\Delta \mathbf{u}) + K_{,\phi} \cdot Tr(\epsilon(\Delta \mathbf{u})) \cdot \mathbf{Id} + 2\mu_{,\phi} \tilde{\epsilon}(\Delta \mathbf{u}_{,\phi}) + K_{,\sigma} \cdot Tr(\epsilon(\Delta \mathbf{u}_{,\phi})) \cdot \mathbf{Id}$$

$$4.1.2.4-2$$

Soit :

$$\Delta \sigma_{,\phi}|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\phi)} = 2\mu_{,\phi} \cdot \tilde{\boldsymbol{\varepsilon}}(\Delta \mathbf{u}) + K_{,\phi} \cdot Tr(\boldsymbol{\varepsilon}(\Delta \mathbf{u})) \cdot \mathbf{Id}$$
 éq
4.1.2.4-3

4.1.2.5 Cas de l'élastoplasticité de type Drucker-Prager

La loi de comportement de type Drucker-Prager s'écrit :

Manuel de référence

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

$$\begin{cases} \varepsilon(\Delta \mathbf{u}) - \mathbf{S} : \mathbf{\sigma} = \frac{3}{2} \cdot \Delta p \cdot \frac{\mathbf{\tilde{\sigma}} + \Delta \mathbf{\tilde{\sigma}}}{(\mathbf{\sigma} + \Delta \mathbf{\sigma})_{eq}} \\ (\mathbf{\sigma} + \Delta \mathbf{\sigma})_{eq} + A \cdot Tr(\mathbf{\sigma} + \Delta \mathbf{\sigma}) \leq R(p + \Delta p) \end{cases}$$

$$4.1.2.5-1$$

où S est le tenseur des souplesses élastiques et R est le critère de plasticité défini par :

dans le cas d'un écrouissage linéaire :

$$R(p) = h \cdot p + \sigma^{y} \text{ pour } 0 \le p \le p_{ultm}$$

$$R(p) = h \cdot p_{ultm} \text{ pour } p \ge p_{ultm}$$

dans le cas d'un écrouissage parabolique :

$$R(p) = \sigma^{y} \cdot (1 - (1 - \sqrt{\frac{\sigma_{ultm}^{y}}{\sigma^{y}}}) \cdot \frac{p}{p_{ultm}})^{2} \text{ pour } 0 \le p \le p_{ultm}$$
$$R(p) = \sigma_{ultm}^{y} \text{ pour } p \ge p_{ultm}$$

En termes numériques, cette loi de comportement est intégrée à l'aide d'un algorithme de retour radial : on fait une prédiction élastique (notée σ^{e}) que l'on corrige si le seuil est violé. On écrit donc :

$$\begin{cases}
\Delta \widetilde{\boldsymbol{\sigma}} = 2\mu \widetilde{\boldsymbol{\epsilon}} (\Delta \mathbf{u}) - 3\mu \cdot \frac{\Delta p}{\sigma_{eq}^{e}} \cdot \widetilde{\boldsymbol{\sigma}}^{e} \\
Tr(\Delta \boldsymbol{\sigma}) = 3K \cdot Tr(\boldsymbol{\epsilon} (\Delta \mathbf{u})) - 9K \cdot A \cdot \Delta p & \text{éq} \\
\Delta p = \text{solution de } \sigma_{eq}^{e} - (3\mu + 9K \cdot A^{2}) \cdot \Delta p + A \cdot Tr(\boldsymbol{\sigma}^{e}) - R(p^{-} + \Delta p) = 0
\end{cases}$$
4.1.2.5-2

Nous allons distinguer deux cas.

1 ^{er} **cas** : $\Delta p = 0$ Ce qui revient à dire que lors du présent pas de charge, le point de Gauss considéré n'a pas vu d'accroissement de sa plastification. On se retrouve alors dans le cas de l'élasticité linéaire :

$$\Delta \sigma_{,\phi}|_{\Delta u \neq \Delta u(\phi)} = 2\mu_{,\phi} \cdot \tilde{\epsilon}(\Delta u) + K_{,\phi} \cdot Tr(\epsilon(\Delta u)) \cdot Id \qquad \text{éq 4.1.2.5-3}$$

2 ^{eme} cas : $\Delta p > 0$

Compte tenu des dépendances entre variables dans [éq 4.1.2.5-1], on peut écrire :

$$\begin{cases} \Delta \boldsymbol{\sigma}_{,\Phi} &= \frac{\partial \Delta \boldsymbol{\sigma}}{\partial \Phi} + \frac{\partial \Delta \boldsymbol{\sigma}}{\partial \sigma} \cdot \boldsymbol{\sigma}_{,\Phi} + \frac{\partial \Delta \boldsymbol{\sigma}}{\partial p} \cdot p_{,\Phi} + \frac{\partial \Delta \boldsymbol{\sigma}}{\partial \epsilon (\Delta \mathbf{u})} \cdot \epsilon (\Delta \mathbf{u}_{,\Phi}) \\ \Delta p_{,\Phi} &= \frac{\partial \Delta p}{\partial \Phi} + \frac{\partial \Delta p}{\partial \sigma} \cdot \boldsymbol{\sigma}_{,\Phi} + \frac{\partial \Delta p}{\partial p} \cdot p_{,\Phi} + \frac{\partial \Delta p}{\partial \epsilon (\Delta \mathbf{u})} \cdot \epsilon (\Delta \mathbf{u})_{,\Phi} \end{cases}$$
éq 4.1.2.5-4

En outre, en accord avec l'intégration algorithmique de la loi, nous allons séparer parties déviatorique et hydrostatique.

Manuel de référence

Version default

Révision : 11522

Date : 25/09/2013 Page : 21/33

Clé : R7.01.16

Code Aster

1

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

$$\partial Tr(\Delta \sigma)$$

$$\begin{split} \Delta \boldsymbol{\sigma}_{,\Phi} \Big|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\Phi)} &= \frac{\partial \Delta \widetilde{\boldsymbol{\sigma}}}{\partial \Phi} + \frac{1}{3} \cdot \frac{\partial Tr(\Delta \boldsymbol{\sigma})}{\partial \Phi} \cdot \mathbf{Id} \\ &+ \frac{\partial \Delta \widetilde{\boldsymbol{\sigma}}}{\partial \boldsymbol{\sigma}} \cdot \boldsymbol{\sigma}_{,\Phi} + \frac{1}{3} \cdot \frac{\partial Tr(\Delta \boldsymbol{\sigma})}{\partial \boldsymbol{\sigma}} \cdot \mathbf{Id} \cdot \boldsymbol{\sigma}_{,\Phi} \\ &+ \frac{\partial \Delta \widetilde{\boldsymbol{\sigma}}}{\partial p} \cdot p_{,\Phi} + \frac{1}{3} \cdot \frac{\partial Tr(\Delta \boldsymbol{\sigma})}{\partial p} \cdot \mathbf{Id} \cdot p_{,\Phi} \end{split}$$
 éq 4.1.2.5-5
$$\Delta p_{,\Phi} \Big|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\Phi)} &= \frac{\partial \Delta p}{\partial \Phi} + \frac{\partial \Delta p}{\partial \boldsymbol{\sigma}} \cdot \boldsymbol{\sigma}_{,\Phi} + \frac{\partial \Delta p}{\partial p} \cdot p_{,\Phi} \end{split}$$

1

Et donc, on calcule :

$$\frac{\partial\Delta\tilde{\boldsymbol{\sigma}}}{\partial\Phi} = \frac{\partial 2\mu}{\partial\Phi} \cdot \tilde{\boldsymbol{\epsilon}}(\Delta \mathbf{u}) - \frac{\partial 3\mu}{\partial\Phi} \cdot \frac{\Delta p}{\sigma_{eq}^{e}} \cdot \tilde{\boldsymbol{\sigma}}^{e} - 3\mu \cdot \frac{\partial\Delta p}{\sigma_{eq}^{e}} \cdot \tilde{\boldsymbol{\sigma}}^{e} + 3\mu \cdot \frac{\Delta p \cdot \frac{\partial\sigma_{eq}^{e}}{\partial\Phi}}{\sigma_{eq}^{e}^{2}} \cdot \tilde{\boldsymbol{\sigma}}^{e} - 3\mu \cdot \frac{\Delta p}{\sigma_{eq}^{e}} \cdot \frac{\partial\tilde{\boldsymbol{\sigma}}^{e}}{\partial\Phi} \cdot \frac{\partial\sigma}{\partial\Phi} \cdot \frac$$

$$\frac{\partial \Delta \widetilde{\boldsymbol{\sigma}}}{\partial \boldsymbol{\sigma}} = -3\mu \cdot \frac{\frac{\partial \Delta p}{\partial \boldsymbol{\sigma}}}{\boldsymbol{\sigma}_{eq}^{e}} \otimes \widetilde{\boldsymbol{\sigma}}^{e} + 3\mu \cdot \frac{\Delta p}{\boldsymbol{\sigma}_{eq}^{e^{-2}}} \cdot \frac{\partial \boldsymbol{\sigma}_{eq}^{e}}{\partial \boldsymbol{\sigma}} \otimes \widetilde{\boldsymbol{\sigma}}^{e} - 3\mu \cdot \frac{\Delta p}{\boldsymbol{\sigma}_{eq}^{e}} \cdot \mathbf{J}$$

où J est l'opérateur déviatorique défini par : $J : \sigma = \tilde{\sigma}$

$$\frac{\partial Tr(\Delta \sigma)}{\partial \sigma} = -9K \cdot A \cdot \frac{\partial \Delta p}{\partial \sigma}$$

$$\frac{\partial \Delta \widetilde{\sigma}}{\partial p} = -\frac{3\mu}{\sigma_{eq}^{e}} \cdot \frac{\partial \Delta p}{\partial p} \cdot \widetilde{\sigma}^{e}$$

$$\frac{\partial Tr(\Delta \sigma)}{\partial p} = -9 \cdot K \cdot A \cdot \frac{\partial \Delta p}{\partial p}$$

$$\Delta p, \phi$$

On utilise le fait que : $(\mathbf{\sigma} + \Delta \mathbf{\sigma})_{eq} = (\mathbf{\sigma} + \Delta \mathbf{\sigma})_{eq}^{e} - 3\mu \cdot \Delta p$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Version default

Date : 25/09/2013 Page : 22/33 522

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

$$\Delta p_{,\Phi} = \frac{1}{3\mu} \cdot \left(\left(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma} \right)_{eq,\Phi}^{e} - \left(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma} \right)_{eq,\Phi} - \frac{\partial 3\mu}{\partial \Phi} \cdot \Delta p \right)$$

Remarque :

Dans ces calculs ont été ou doivent être utilisés les résultats suivants :

77..

On doit également calculer les dérivées partielles de l'incrément de déformation plastique cumulée par rapport aux paramètres matériaux, aux contraintes et à la déformation plastique cumulée (cf Annexe)

Celles-ci sont obtenues en dérivant l'équation résolue pour calculer l'incrément de déformation plastique cumulée lors du calcul direct.

4.1.2.6 Calcul de la dérivée du déplacement

Une fois $\Delta \sigma_{,\phi}|_{\Delta u \neq \Delta u(\Phi)}$ calculé, on peut constituer le second membre $\mathbf{R}_{,\phi}|_{\Delta u \neq \Delta u(\Phi)}$ en utilisant [éq 4.1.2.3-1]. On résout alors le système [éq 4.1.2.2-2] et l'on obtient l'incrément de déplacement dérivé par rapport à Φ .

4.1.2.7 Calcul de la dérivée des autres grandeurs

Maintenant que l'on dispose de $\Delta \mathbf{u}$, $_{\phi}$, on doit calculer la dérivée des autres grandeurs. On sépare encore deux cas :

Elasticité linéaire

D'après [éq 4.1.2.5-1], on calcule comme suit la dérivée de l'incrément de contrainte :

$$\Delta \sigma, {}_{\phi} = \Delta \sigma, {}_{\phi}|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\phi)} + 2\mu \cdot \tilde{\mathbf{\epsilon}} (\Delta \mathbf{u}, {}_{\phi}) + K \cdot Tr(\mathbf{\epsilon}(\Delta \mathbf{u}, {}_{\phi})).$$
 Id

L'incrément de déformation plastique cumulée, quant à lui, ne voit pas d'évolution :

$$\Delta p$$
, $_{\Phi}=0$

Elastoplasticité de type Drucker-Prager

Si $\Delta p = 0$, on retrouve le cas précédent. Sinon, on obtient d'après [éq 4.1.2.5-2] :

$$\Delta \sigma_{,\phi} = \Delta \sigma_{,\phi}|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\phi)} + \frac{\partial \Delta \sigma}{\partial \varepsilon (\Delta \mathbf{u})} : \varepsilon (\Delta \mathbf{u}_{,\phi})$$

Et pour la déformation plastique cumulée, on utilise la relation suivante :

$$(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq} = (\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq}^{e} - 3\mu \cdot \Delta p$$

Celle-ci nous permet d'écrire que :

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 24/33 Clé : R7.01.16 Révision : 11522

Version

default

$$\Delta p_{,\Phi} = \frac{1}{3\mu} \cdot \left(\left(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma} \right)_{eq,\Phi}^{e} - \left(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma} \right)_{eq,\Phi} - \frac{\partial 3\mu}{\partial \Phi} \cdot \Delta p \right)$$

Les contraintes équivalentes sensibles sont calculées ainsi :

$$(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq,\Phi}^{e} = \frac{3}{2(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq}^{e}} \cdot (\widetilde{\boldsymbol{\sigma}}_{,\Phi} + \frac{\partial 2\mu}{\partial \Phi} \cdot \widetilde{\boldsymbol{\varepsilon}}(\Delta \mathbf{u}) + 2\mu \cdot \widetilde{\boldsymbol{\varepsilon}}(\Delta \mathbf{u}_{,\Phi})) : (\widetilde{\boldsymbol{\sigma}} + 2\mu \cdot \widetilde{\boldsymbol{\varepsilon}}(\Delta \mathbf{u}))$$
$$(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq,\Phi} = \frac{3}{2(\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma})_{eq}} \cdot (\widetilde{\boldsymbol{\sigma}}_{,\Phi} + \Delta \widetilde{\boldsymbol{\sigma}}_{,\Phi}) : (\widetilde{\boldsymbol{\sigma}} + \Delta \widetilde{\boldsymbol{\sigma}})$$

Une fois que tous ces calculs sont terminés, on réactualise toutes les grandeurs dérivées et on passe au pas de charge suivant.

4.1.2.8 Synthèse

Pour résumer les paragraphes précédents, on représente les différentes étapes du calcul par le diagramme suivant :

4.2 Sensibilité au chargement

La démarche est ici assez proche de celle du paragraphe précédent. Nous la développons néanmoins entièrement dans un souci de clarté, afin que ce paragraphe puisse être lu de façon indépendante.

4.2.1 Le problème direct : expression du chargement

Jusqu'à maintenant nous avons exprimé le problème direct sous la forme :

$$\begin{cases} \mathbf{R}(\mathbf{u}_i, t_i) + \mathbf{B}^t \lambda_i &= \mathbf{L}_i \\ \mathbf{B}\mathbf{u}_i &= \mathbf{u}_i^d \end{cases}$$

éq 4.2.1-1

Les chargements sont rassemblés au second membre et comprennent les forces imposées L_i et les déplacements imposés u_i^d .

Manuel de référence

Code Aster

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

> Supposons que le chargement en force imposée $\,L_{i}\,$ dépende d'un paramètre scalaire $\,lpha\,$ de la manière suivante :

$$\mathbf{L}_{\mathbf{i}}(\alpha) = \mathbf{L}_{\mathbf{i}}^{1} + \mathbf{L}_{\mathbf{i}}^{2}(\alpha)$$

Où

- $L^1_i\,$ est un vecteur indépendant de $\alpha\,$, - $L^2_i\,$ dépend linéairement de $\alpha\,$.

On désire calculer la sensibilité des résultats du calcul direct à une variation du paramètre α .

4.2.2 Le problème dérivé

4.2.2.1 Dérivation de l'équilibre

Comme dans le chapitre précédent, en tenant compte des dépendances entre les différents champs, on dérive l'équilibre [éq 4.2.1-1] par rapport α :

$$\begin{cases} \frac{\partial \mathbf{R}}{\partial \alpha} + \frac{\partial \mathbf{R}}{\partial \Delta \mathbf{u}} \cdot \Delta \mathbf{u}_{,\alpha} + \frac{\partial \mathbf{R}}{\partial \sigma_{i-1}} \cdot \sigma_{i-1,\alpha} + \frac{\partial \mathbf{R}}{\partial p_{i-1}} \cdot p_{i-1,\alpha} + \mathbf{B}^{t} \lambda_{i,\alpha} = \mathbf{L}_{i}^{2}(1) \\ \mathbf{B} \Delta \mathbf{u}_{,\alpha} = -\mathbf{B} \mathbf{u}_{i-1,\alpha} \end{cases}$$
 éq 4.2.2.1-1

On a utilisé le fait que $\ L_i^2$ dépend linéairement de α .

Soit :

$$\begin{cases} \mathbf{K}_{i}^{N} \Delta \mathbf{u}_{,\alpha} + \mathbf{B}^{t} \boldsymbol{\lambda}_{i,\alpha} &= \mathbf{L}_{i}^{2}(1) - \mathbf{R}_{,\alpha} \Big|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\alpha)} \\ \mathbf{B} \Delta \mathbf{u}_{,\alpha} &= -\mathbf{B} \mathbf{u}_{\iota-1,\alpha} \end{cases}$$
éq 4.2.2.1-2

Où

- K^N_i est la dernière matrice tangente utilisée pour atteindre la convergence dans les itérations de Newton,
- $\mathbf{R}_{a}|_{A\mathbf{u}\neq A\mathbf{u}(a)}$ est la variation totale de \mathbf{R} , sans tenir compte de la dépendance de $\Delta \mathbf{u}$ par rapport à α .

Le problème réside comme précédemment dans le calcul de $\mathbf{R}_{a}|_{A\mathbf{u}\neq A\mathbf{u}(a)}$.

4.2.2.2 Calcul de la dérivée de la loi de comportement

D'après [éq 4.1.1-2], on peut réécrire $\mathbf{R}_{,\alpha}|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\alpha)}$ sous la forme :

Pour ce faire, nous allons utiliser les expressions qui interviennent dans l'intégration numérique de la loi de comportement pour calculer $\Delta \sigma_{,a}|_{Au \neq Au(a)}$.

Date : 25/09/2013 Page : 25/33 Clé : R7.01.16 Révision : 11522

> éα 4.2.1-2

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

4.2.2.3 Cas de l'élasticité linéaire

Dans le cadre de l'élasticité linéaire, la loi de comportement s'exprime par :

$$\Delta \sigma = 2\mu . \tilde{\epsilon} (\Delta u) + K . Tr(\epsilon(\Delta u)). \text{ Id}$$
éq 4.2.2.3-1

où Id est le tenseur identité d'ordre 2.

Alors, en calculant la variation totale de [éq 4.2.2.3-1] par rapport à α on obtient :

Soit :

$$\Delta \sigma_{a}|_{A \mathbf{u} \neq A \mathbf{u}(a)} = 0.$$

4.2.2.4 Cas de l'élastoplasticité de type Drucker-Prager

Comme précédemment, nous allons distinguer deux cas.

1 er cas : $\Delta p = 0$

Ce qui revient à dire que lors du présent pas de charge, le point de Gauss considéré n'a pas vu d'accroissement de sa plastification. On se retrouve alors dans le cas de l'élasticité linéaire :

$$\Delta \sigma,_{\alpha}|_{\Delta \mathbf{u} \neq \Delta \mathbf{u}(\alpha)} = 0.$$

2 ^{eme} cas : $\Delta p > 0$

Compte tenu des dépendances entre variables, on peut écrire :

$$\begin{split} \Delta \sigma_{,\alpha} &= \frac{\partial \Delta \sigma}{\partial \alpha} + \frac{\partial \Delta \sigma}{\partial \sigma} \cdot \sigma_{,\alpha} + \frac{\partial \Delta \sigma}{\partial p} \cdot p_{,\alpha} + \frac{\partial \Delta \sigma}{\partial \varepsilon (\Delta u)} \cdot \varepsilon (\Delta u_{,\alpha}) \\ \Delta p_{,\alpha} &= \frac{\partial \Delta p}{\partial \alpha} + \frac{\partial \Delta p}{\partial \sigma} \cdot \sigma_{,\alpha} + \frac{\partial \Delta p}{\partial p} \cdot p_{,\alpha} + \frac{\partial \Delta p}{\partial \varepsilon (\Delta u)} \cdot \varepsilon (\Delta u)_{,\alpha} \end{split}$$

En outre, en accord avec l'intégration algorithmique de la loi, nous allons séparer parties déviatorique et hydrostatique.

$$\begin{split} \left| \begin{split} \Delta \sigma \,,_{\alpha} \right|_{\Delta u \neq \Delta u(\alpha)} &= \frac{\partial \varDelta \tilde{\sigma}}{\partial \alpha} + \frac{1}{3} \cdot \frac{\partial \operatorname{Tr}(\varDelta \sigma)}{\partial \alpha} \cdot \operatorname{Id} \\ &+ \frac{\partial \varDelta \tilde{\sigma}}{\partial \sigma} \cdot \sigma \,,_{\alpha} + \frac{1}{3} \cdot \frac{\partial \operatorname{Tr}(\varDelta \sigma)}{\partial \sigma} \cdot \operatorname{Id} \cdot \sigma \,,_{\alpha} \\ &+ \frac{\partial \varDelta \tilde{\sigma}}{\partial p} \cdot p \,,_{\alpha} + \frac{1}{3} \cdot \frac{\partial \operatorname{Tr}(\varDelta \sigma)}{\partial p} \cdot \operatorname{Id} \cdot p \,,_{\alpha} \\ \left| \varDelta p \,,_{\alpha} \right|_{\Delta u \neq \varDelta u(\alpha)} &= \frac{\partial \varDelta p}{\partial \alpha} + \frac{\partial \varDelta p}{\partial \sigma} \cdot \sigma \,,_{\alpha} + \frac{\partial \varDelta p}{\partial p} \cdot p \,,_{\alpha} \end{split}$$

Et donc, on calcule :

ł

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Date : 25/09/2013 Page : 26/33 Clé : R7.01.16 Révision : 11522

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 27/33 Clé : R7.01.16 Révision : 11522

Dans la mesure où l'on n'a pas de dépendance explicite de $\Delta \sigma$ par rapport à α , on obtient :

 $\frac{\partial \Delta \tilde{\mathbf{\sigma}}}{\partial \alpha} = 0.$ $\frac{\partial Tr(\Delta \mathbf{\sigma})}{\partial \alpha} = 0.$

<u>д Д **б**</u> д р

$$\frac{\partial \Delta \tilde{\sigma}}{\partial \sigma} = -3\mu \cdot \frac{\frac{\partial \Delta p}{\partial \sigma}}{\sigma_{eq}^{e}} \otimes \tilde{\sigma}^{e} + 3\mu \cdot \frac{\Delta p}{\sigma_{eq}^{e^{2}}} \cdot \frac{\partial \sigma_{eq}^{e}}{\partial \sigma} \otimes \tilde{\sigma}^{e} - 3\mu \cdot \frac{\Delta p}{\sigma_{eq}^{e}} \cdot J$$

où J est l'opérateur déviatorique.

$$\frac{\partial Tr(\Delta\sigma)}{\partial \sigma} = -9\mathbf{K} \cdot A \cdot \frac{\partial \Delta p}{\partial \sigma}$$

$$\frac{\partial \Delta \tilde{\sigma}}{\partial p} = -\frac{3\mu}{\sigma_{eq}^{e}} \cdot \frac{\partial \Delta p}{\partial p} \cdot \tilde{\sigma}^{e}$$
$$\frac{\partial Tr(\Delta \sigma)}{\partial p} = -9 \cdot K \cdot A \cdot \frac{\partial \Delta p}{\partial p}$$
$$\Delta p,$$

On utilise le fait que : $(\sigma + \varDelta \sigma)_{eq} = (\sigma + \varDelta \sigma)_{eq}^e - 3\mu \cdot \varDelta p$

$$\Delta p_{,\alpha} = \frac{1}{3\mu} \cdot \left(\left(\sigma + \Delta \sigma \right)_{eq}^{e,\alpha} - \left(\sigma + \Delta \sigma \right)_{eq,\alpha} - \frac{\partial 3\mu}{\partial \alpha} \cdot \Delta p \right)$$

On se réfèrera de nouveau à la remarque à la fin du [§4.1.2.5] pour les grandeurs dont le calcul n'a pas été détaillé ici.

4.2.2.5 Calcul de la dérivée du déplacement

Une fois $\Delta \sigma_{,\alpha}|_{\Delta u \neq \Delta u(\alpha)}$ calculé, on peut constituer le second membre $\mathbf{R}_{,\alpha}|_{\Delta u \neq \Delta u(\alpha)}$. On résout alors le système [éq 4.2.2.1-1] et l'on obtient l'incrément de déplacement dérivé par rapport à α .

4.2.2.6 Calcul de la dérivée des autres grandeurs

Maintenant que l'on dispose de $\Delta u_{,\alpha}$, on doit calculer la dérivée des autres grandeurs. On sépare encore deux cas :

Elasticité linéaire

D'après [éq 4.2.2.3-1], on calcule comme suit la dérivée de l'incrément de contrainte :

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

$$\Delta \sigma_{,\alpha} = 0.+2\mu \cdot \tilde{\epsilon}(\Delta \mathbf{u}_{,\alpha}) + K \cdot Tr(\epsilon(\Delta \mathbf{u}_{,\alpha})).$$
 Id

L'incrément de déformation plastique cumulée, quant à lui, ne voit pas d'évolution :

$$\Delta p$$
, $a=0$

Elastoplasticité de type Drucker Prager

Si $\Delta p = 0$, on retrouve le cas précédent. Sinon, on obtient :

$$\Delta \sigma ,_{\alpha} = \Delta \sigma ,_{\alpha} |_{\Delta u \neq \Delta u(\alpha)} + \frac{\partial \Delta \sigma}{\partial \varepsilon (\Delta u)} : \varepsilon (\Delta u ,_{\alpha})$$

Et pour la déformation plastique cumulée :

$$\Delta p_{,\alpha} = \frac{1}{3\mu} \cdot \left(\left(\sigma + \Delta \sigma \right)_{eq}^{e,\alpha} - \left(\sigma + \Delta \sigma \right)_{eq,\alpha} - \frac{\partial \, 3\mu}{\partial \, \alpha} \cdot \Delta p \right)$$

Une fois que tous ces calculs sont terminés, on réactualise toutes les grandeurs dérivées et on passe au pas de charge suivant.

4.2.2.7 Synthèse

Pour résumer les paragraphes précédents, on représente les différentes étapes du calcul par le diagramme suivant :

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Version default

Date : 25/09/2013 Page : 28/33 Clé : R7.01.16 Révision : 11522

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ
 Date : 25/09/2013
 Page : 29/33

 Clé : R7.01.16
 Révision : 11522

5 Fonctionnalités et vérification

La loi de comportement peut être définie par les mots-clés DRUCK_PRAG et DRUCK_PRAG_N_A pour la version non-associée (commande STAT_NON_LINE, mot clé facteur COMPORTEMENT). Elles sont associées aux matériaux DRUCK PRAG et DRUCK PRAG FO (commande DEFI MATERIAU).

La loi HOEK BROWN est vérifiée par les cas tests suivants :

SSND104	[V6.08.104]	Validation du comportement DRUCK_PRAG_N_A		
SSNP124	[V6.03.124]	Essai biaxial drainé avec un comportement DRUCK_PRAGER adoucissant		
SSNP125	Documentation inexistante	Validation de l'option INDL_ELGA pour le comportement DRUCK_PRAGER		
SSNV168	[V6.04.168]	Essai triaxial drainé avec un comportement DRUCK_PRAGER adoucissant		
WTNA101	[V7.33.101]	Essai triaxial non-drainé avec un comportement DRUCK_PRAGER adoucissant		
WTNP114	[V7.32.114]	Cas test de référence pour le calcul des déformations mécaniques		

Les tests suivant vérifient spécifiquement le calcul de sensibilité aux paramètres de la loi :

SENSM12	[V1.01.190]	Plaque sous pression en déformations planes (plasticité de DRUCK_PRAGER)		
SENSM13	[V1.01.192]	Essai tri-axial avec le modèle de type 3D		
SENSM14	[V1.01.193]	Cavité 2D calcul de sensibilité (Loi DRUCK_PRAGER)		

6 Bibliographie

- BENALLAL A. et COMI C.: The role of deviatoric and volumetric non-associativities in strain localisation (1993).
- CANO V : Instabilités et rupture dans les solides élasto-visco-plastiques (1996).
- RICE JR et RUDNICKI JW : A note on some features of the theory of localization of deformation (1980).
- RICE JR : The localization of plastic deformations, in Theoretical and Applied Mechanics (1976).
- HILL R : A general theory of uniqueness and stability in elastic-plastic solids (1958).
- ORTIZ M : An analytical study of the localized failure modes of concrete (1987).
- DOGHRI I : Etude de la localisation de l'endommagement (1989).
- TARDIEU N : Calcul de sensibilité en mécanique, Documentation de référence du *Code_Aster* [R4.03.03].

7 Description des versions du document

Version Aster Auteur(s)	Description des modifications
-------------------------	-------------------------------

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ

Date : 25/09/2013 Page : 30/33 Clé : R7.01.16 Révision : 11522

	Organisme(s)		
7.4	R.FERNANDES, P.	DE	Texte initial
	BONNIERES, C.CHAVANT	EDF	
	R&D / AMA		
9.4	R.FERNANDES		Ajout du modèle non associé

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 31/33 Clé : R7.01.16 Révision : 11522

Annexe 1 Calcul des dérivées partielles de Δp

A1.1 Calcul de la dérivée partielle de l'incrément de déformation plastique dans le cas d'un écrouissage linéaire

$$R(p) = h \cdot p + \sigma^{y} \text{ pour } 0 \le p < p_{ultm}$$

$$\Delta p = \frac{\sigma_{eq}^{e} + \mathbf{A} \cdot Tr(\boldsymbol{\sigma}^{e}) - h \cdot p^{-} - \sigma^{Y}}{9K \cdot \mathbf{A}^{2} + 3\mu + h}$$

donc :

$$\frac{\partial \Delta p}{\partial \Phi} = \frac{1}{9K \cdot A^2 + 3\mu + h} \cdot \left(\frac{\partial \sigma_{eq}^e}{\partial \Phi} + \frac{\partial A}{\partial \Phi} \cdot Tr(\sigma^e) + A \cdot \frac{\partial Tr(\sigma^e)}{\partial \Phi} - \frac{\partial h}{\partial \Phi} \cdot p^- - \frac{\partial \sigma^y}{\partial \Phi} - \Delta p \cdot \left(9 \cdot \frac{\partial K}{\partial \Phi} \cdot A^2 + 18 \cdot K \cdot A \cdot \frac{\partial A}{\partial \Phi} + \frac{\partial 3\mu}{\partial \Phi} + \frac{\partial h}{\partial \Phi}\right)\right)$$

$$\frac{\partial \Delta p}{\partial \mathbf{\sigma}} = \frac{1}{3\mu + 9K \cdot \mathbf{A}^2 + h} \cdot \left(A \cdot \frac{\partial Tr(\mathbf{\sigma}^e)}{\partial \mathbf{\sigma}} + \frac{\partial \sigma_{eq}^e}{\partial \mathbf{\sigma}}\right)$$

$$\frac{\partial \Delta p}{\partial p} = -h \cdot \frac{1}{3\mu + 9K \cdot \mathbf{A}^2 + h}$$

$$R(p) = h \cdot p_{ultm} + \sigma^{y}$$
 pour $p > p_{ultm}$

$$\Delta p = \frac{\sigma_{eq}^{e} + \mathbf{A} \cdot Tr(\boldsymbol{\sigma}^{e}) - h \cdot p_{ulim} - \boldsymbol{\sigma}^{Y}}{9K \cdot \mathbf{A}^{2} + 3\mu}$$

donc :

$$\frac{\partial \Delta p}{\partial \Phi} = \frac{1}{9K \cdot A^2 + 3\mu} \cdot \left(\frac{\partial \sigma_{eq}^e}{\partial \Phi} + \frac{\partial A}{\partial \Phi} \cdot Tr(\boldsymbol{\sigma}^e) + A \cdot \frac{\partial Tr(\boldsymbol{\sigma}^e)}{\partial \Phi} - \frac{\partial h}{\partial \Phi} \cdot p_{ultm} - h \cdot \frac{\partial p_{ultm}}{\partial \Phi} - \frac{\partial \sigma^y}{\partial \Phi} - \frac{\partial r}{\partial \Phi} \cdot p_{ultm} - h \cdot \frac{\partial p_{ultm}}{\partial \Phi} - \frac{\partial \sigma^y}{\partial \Phi} - \frac{\partial r}{\partial \Phi} \cdot p_{ultm} - h \cdot \frac{\partial r}{\partial \Phi} - \frac{\partial$$

$$\frac{\partial \Delta p}{\partial \mathbf{\sigma}} = \frac{1}{3\mu + 9K \cdot A^2} \left(A \cdot \frac{\partial Tr(\mathbf{\sigma}^e)}{\partial \mathbf{\sigma}} + \frac{\partial \sigma_{eq}^e}{\partial \mathbf{\sigma}} \right)$$
$$\frac{\partial \Delta p}{\partial p} = 0$$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 32/33 Clé : R7.01.16 Révision : 11522

A1.2 Calcul de la dérivée partielle de l'incrément de déformation plastique dans le cas d'un écrouissage parabolique

$$\begin{split} &R(p) = \sigma^{y} \cdot (1 - (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p}{p_{ulm}})^{2} \text{ pour } 0 \leq p < p_{ulm} \\ &\frac{\partial \sigma_{eq}^{e}}{\partial \Phi} - (\frac{\partial 3\mu}{\partial \Phi} + 9A^{2} \cdot \frac{\partial K}{\partial \Phi} + 18K \cdot A \cdot \frac{\partial A}{\partial \Phi}) \Delta p - (3\mu + 9K \cdot A^{2}) \cdot \frac{\partial \Delta p}{\partial \Phi} + \frac{\partial A}{\partial \Phi} \cdot Tr(\sigma^{e}) + A \cdot \frac{\partial Tr(\sigma^{e})}{\partial \Phi} \\ &- \frac{\partial \sigma^{y}}{\partial \Phi} \cdot (1 - (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p^{-} + \Delta p}{p_{ulm}})^{2} \\ &- 2\sigma^{y} \cdot (1 - (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p^{-} + \Delta p}{p_{ulm}}) \cdot \frac{p^{-} + \Delta p}{p_{ulm}}) \\ &(\frac{\partial \sigma_{ulm}^{e}}{\partial \Phi} \cdot \frac{p^{-} + \Delta p}{2p_{ulm}} \cdot \sqrt{\sigma_{ulm}^{y}} \cdot \frac{p^{-} + \Delta p}{p_{ulm}}) \cdot \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}} + \frac{\partial p_{ulm}}{\partial \Phi} \cdot (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p^{-} + \Delta p}{\partial \Phi} - \frac{\partial \Delta p}{2p_{ulm}} \cdot \frac{1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}}{p_{ulm}})}{\frac{\partial \sigma^{e}}{\partial \Phi} \cdot \frac{p^{-} + \Delta p}{2p_{ulm}} \cdot \sqrt{\frac{\sigma^{y}}{\sigma^{y}}} + \frac{\partial p_{ulm}}{\partial \Phi} \cdot (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p^{-} + \Delta p}{p_{ulm}} - \frac{\partial \Delta p}{\partial \Phi} \cdot \frac{1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}}{p_{ulm}})}{p_{ulm}} + \frac{\partial \rho}{\partial \Phi} \cdot (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \cdot \frac{p^{-} + \Delta p}{p_{ulm}} - \frac{\partial \Delta p}{\partial \Phi} \cdot \frac{1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}}{p_{ulm}}}) = 0 \\ &= 0 \\ &- (3\mu + 9K \cdot A^{2}) \cdot \frac{\partial \Delta p}{\partial p} + 2\sigma^{y} \cdot (1 - (1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}) \frac{p^{-} + \Delta p}{p_{ulm}}) \cdot \frac{1 - \sqrt{\frac{\sigma_{ulm}^{y}}{\sigma^{y}}}}{p_{ulm}} \cdot (1 + \frac{\partial \Delta p}{\partial p}) = 0 \\ &R(p) = \sigma_{ulm}^{y} \text{ pour } p > p_{ulm} \\ &\frac{\partial \Delta p}{\partial \Phi} - (\frac{\partial 3\mu}{\partial \Phi} + \frac{\partial 9K}{\partial \Phi} \cdot A^{2} + 18K \cdot \frac{\partial A}{\partial \Phi} \cdot A) \cdot \Delta p + \frac{\partial A}{\partial \Phi} \cdot Tr(\sigma^{e}) + A \cdot \frac{\partial Tr(\sigma^{e})}{\partial \Phi} - \frac{\partial \sigma^{ulm}}{\partial \Phi}) \end{split}$$

$$\frac{\partial \Delta p}{\partial \sigma} = \frac{1}{3\mu + 9K \cdot A^2} \left(\frac{\partial \sigma_{eq}^e}{\partial \sigma} + A \cdot \frac{\partial Tr(\sigma^e)}{\partial \sigma} \right)$$
$$\frac{\partial \Delta p}{\partial \sigma} = 0$$

$$\partial p$$

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Titre : Intégration des comportements de Drucker-Prager DR[...] Responsable : Sam CUVILLIEZ Date : 25/09/2013 Page : 33/33 Clé : R7.01.16 Révision : 11522

A1.3 Cas de la projection au sommet du cône

Le principe de la résolution analytique consiste à déterminer les contraintes effectives comme la projection des contraintes élastiques sur le critère.

Il se peut qu'il n'y ait pas de solution.

Si la condition $\Delta p \leq \frac{\sigma_{eq}^{e}}{3\mu}$ n'est pas respectée, il faut trouver les contraintes effectives par projection au sommet du cône $\Delta p = \frac{\sigma_{eq}^{e}}{3\mu}$.

Dans ce cas, on obtient :

$$\frac{\partial \Delta p}{\partial \Phi} = \frac{1}{3\mu} \cdot \left(\frac{\partial \sigma_{eq}^{e}}{\partial \Phi} - \Delta p \cdot \frac{\partial 3\mu}{\partial \Phi}\right)$$
$$\frac{\partial \Delta p}{\partial \sigma} = \frac{1}{3\mu} \cdot \frac{\partial \sigma_{eq}^{e}}{\partial \sigma}$$
$$\frac{\partial \Delta p}{\partial \sigma}$$

$$\frac{\partial \Delta p}{\partial p} = 0$$