Titre : Structure de données sd_corresp_2_mailla

Responsable : Jacques PELLET

Date : 05/09/2012 Page : 1/6 Clé : D4.06.30 Révision : 9481

Structure s de données sd_corresp_2_mailla et sd_l_corresp_2_mailla

Résumé:

Révision: 9481

Date: 05/09/2012 Page: 2/6

Clé: D4.06.30

Code_Aster

Titre : Structure de données sd_corresp_2_mailla

Responsable : Jacques PELLET

Table des matières

1	Généralités	3
	1.1 Pour la méthode "COLLOCATION"	3
	1.2 Pour les méthodes "NUAGE_DEG_0/1"	3
2	Arborescence	3
	2.1 Contenu des objets JEVEUX	4
	2.2 Exemple d'utilisation (méthode 'COLLOCATION')	5

Titre : Structure de données sd_corresp_2_mailla Date : 05/09/2012 Page : 3/6
Responsable : Jacques PELLET Clé : D4.06.30 Révision : 9481

1 Généralités

La sd_corresp_2_mailla est la structure de données utilisée pour la projection des champs dans la commande PROJ_CHAMP. Elle stocke les informations géométriques permettant d'associer les entités géométriques des 2 maillages à projeter l'un sur l'autre. La SD est très différente en fonction de la méthode de projection retenue.

Pour l'instant cette SD est utilisée dans la commande PROJ_CHAMP ainsi que dans le mot clé LIAISON MAIL d'AFFE CHAR MECA.

La structure $sd_1_corresp_2_mailla$ est constituée de 2 $sd_corresp_2_mailla$. La première est utilisée pour toutes les méthodes de PROJ_CHAMP sauf ECLA_PG , la deuxième est utilisée pour la méthode ECLA_PG . Cette structure a été créée dans le but de projeter des résultats possédant à la fois des champs ELGA et non ELGA . On a ainsi les deux $sd_corresp_2_mailla$ disponibles selon le type de champ à projeter. La structure $sd_l_corresp_2_mailla$ est utilisée uniquement dans PROJ_CHAMP .

1.1 Pour la méthode "COLLOCATION"

Soit 2 maillages M1 et M2 qui occupent une même région de l'espace. La sd_corresp_2_mailla correspondant au couple (M1, M2) est la structure de données qui exprime la correspondance géométrique entre les nœuds du maillage M2 et les mailles du maillage M1.

1.2 Pour les méthodes "NUAGE_DEG_0/1"

Soit 2 maillages M1 et M2 qui occupent une même région de l'espace. La sd_corresp_2_mailla correspondant au couple (M1, M2) contient les listes des nœuds à mettre en vis à vis.

2 Arborescence

```
sd corresp 2 mailla (K16)
                              ::= record
   soit nno2 le nombre de nœuds du maillage M2
          '.PJXX K1'
                       : OJB
                                 S V K24
                                                dim=5
   (0)
          '.$VIDĒ'
   (0)
                       : / sd corresp2 elem
                           / sd corresp2 nuage
sd corresp 2 elem (K16)
                              ::= record
   soit nno2 le nombre de nœuds du maillage M2
   (o) '.PJEF NB'
                                            dim=nno2
                    : OJB
                              S
                                 V
                                     Ι
      '.PJEF M1'
                    : OJB
                                            dim=nno2
                              S
                                 7.7
                                    Т
      '.PJEF CF'
                                            dim=3*nno2
                    : OJB
                              S
                                 V R
      '.PJEF CO'
                    : OJB
                              S
                                 V R
      '.PJEF NU'
                    : OJB
                              S
                                 V
                                    Т
   (f) '.PJEF TR'
                       OJB
                              S
                                            dim=nno2
      '.PJEF AM'
                              S
                                  V
                                            dim=nno2
                       OJB
   % si METHODE='ECLA PG' :
   (f) '.PJEF MP'
                                     К8
                                            dim=1
                  : OJB
                              S
                                 V
      '.PJEF EL'
                    : OJB
                              S
                                 V
   % si METHODE='SOUS POINT MATER' :
      '.PJEF SP' : OJB S V
```

Titre : Structure de données sd_corresp_2_mailla Date : 05/09/2012 Page : 4/6
Responsable : Jacques PELLET Clé : D4.06.30 Révision : 9481

Titre : Structure de données sd_corresp_2_mailla Date : 05/09/2012 Page : 5/6
Responsable : Jacques PELLET Clé : D4.06.30 Révision : 9481

2.1 Contenu des objets JEVEUX

```
'.PJXX K1'
   '.PJXX K1' (1) : nom du maillage 1 : M1
   '.PJXX_K1' (2) : nom du maillage 2 : M2
   '.PJXX K1' (3) : méthode de projection :
   'COLLOCATION'/'NUAGE_DEG_0'/'NUAGE_DEG_1'
   '.PJXX K1' (4) : nom d'un cham no "modèle" (si méthode='NUAGE DEG 0/1')
   '.PJXX K1' (5) : inutilisé
'.PJEF M1'
   '.PJEF M1'(ino2) : ima1 : numéro de la maille de m1 qui doit
                                 servir à l'interpolation du nœud ino2 de m2
'.PJEF NB'
   '.PJEF NB' (ino2): nombre de nœuds de ima1
'.PJEF CO'
   '.PJEF CO' (3*(ino2-1)+1) : "ksi" de ino2 dans ima1
    '.PJEF CO' (3*(ino2-1)+2) : "eta" de ino2 dans ima1
   '.PJEF CO' (3*(ino2-1)+3) : "dzeta" de ino2 dans ima1
   Remarques:
       pjef co ne sert que pour les liaisons 3d/coque et 3d/poutre
       Les mailles SEG n'utilisent que ksi,
       Les TRIA et QUAD n'utilisent que ksi et eta
'.PJEF NU'
   '.PJEF NU' : contient les numéros des nœuds de {\tt m1} servant à l'interpolation des nœuds de
                  m2 (mis bout à bout)
'.PJEF CF'
   '.PJEF CF': contient les coefficients pour les nœuds de m1 servant a l'interpolation des
                  nœuds de m2 (mis bout a bout)
 '.PJEF TR' et'.PJEF AM'
   Les objets .PJEF TR et PJEF AM n'existent que dans les corresp 2 mailla temporaires
   faites de TR3 (TR3 = SEG2, TRIA3 ou TETRA4)
   '.PJEF TR' (ino2) : numéro du TR3 associé au nœud ino2
   '.PJEF AM' (ino2) :
       1 -> le nœud ino2 est inclus dans une maille de m1 on peut alors utiliser la routine
            reereg.f pour améliorer la précision de l'interpolation.
       0 -> sinon
'.PJEF MP' et '.PJEF EL'
   Les objets . PJEF MP et PJEF EL n'existent que pour METHODE = 'ECLA PG'
   '.PJEF MP' :
   (1) : nom du maillage 1 « prime »
   '.PJEF EL' : long >= 2*nb PG(modèle « 2 »)
```

Titre : Structure de données sd_corresp_2_mailla Date : 05/09/2012 Page : 6/6
Responsable : Jacques PELLET Clé : D4.06.30 Révision : 9481

```
Pour chaque point de Gauss du modèle « 2 », on stocke : V(2*(ipg-1)+1) = ima2 : numéro de la maille contenant ipg V(2*(ipg-1)+2) = kpg : numéro du point de Gauss dans ima2
```

'.PJEF SP'

L'objet .PJEF SP n'existe que pour METHODE = 'SOUS POINT MATER'.

```
'.PJEF_SP' : long = 3*nb_SP_MAT(modèle « 2 »)
Pour chaque sous-point et chaque point de la liste de famille MATER du
modèle « 2 », on stocke :
V(3*(ispma-1)+1) = ima2 : numéro de la maille
V(3*(ispma-1)+2) = kpg : numéro du point de Gauss
V(3*(ispma-1)+3) = sspg : numéro du sous-point
```

'.PJNG I1'et '.PJNG I2'

Ces 2 vecteurs d'entiers stockent les numéros des nœuds en correspondance via le mot clé facteur VIS_A_VIS.

Soit NOCC le nombre d'occurrences de VIS A VIS :

Remarques:

Si le mot clé VIS_A_VIS n'est pas utilisé : .PJNG_I1 (1) =0 L'objet .PJNG_I2 a la même organisation que .PJNG_I1, mais il renseigne sur les nœuds du maillage MA2.

2.2 Exemple d'utilisation (méthode 'COLLOCATION')

On veut savoir comment interpoler INO2 à partir du maillage M1

```
soit nbno1='.PJEF_NB'(INO2)
soit decal= somme pour ino<INO2 de '.PJEF_NB'(ino)
valeur(INO2)=0
do i=1,nbno1
  nuno1='.PJEF_NU' (decal+i)
  coefr='.PJEF_CF' (decal+i)
  valeur(INO2)=valeur(INO2)+coefr*valeur(nuno1)
enddo</pre>
```