

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Date : 14/06/2012 Page : 1/9 Clé : V7.32.119 Révision : 9120

Version

default

WTNP119 – Modélisation plane du gonflement d'une argile avec le modèle ELAS_GONF

Résumé :

Ce test permet de valider le modèle dit ELAS_GONF qui a été développé par Dashnor Hoxha (LAEGO) et a été utilisé et validé dans le cadre d'un benchmark sur la modélisation des alvéoles de déchets C (voir bibliographie). Ce modèle élastique non linéaire dépendant de la succion, décrit le comportement gonflant de certains types d'argile. Typiquement il est utilisé pour modéliser le comportement des bouchons d'argile compacté - ou bentonite - utilisés pour fermer les alvéoles de stockage de déchets radioactifs.

Ce modèle est écrit en fonction du couple de variables suivant : la contrainte nette et la succion (la succion est la pression capillaire).

Ce test représente la pression de gonflement d'une cellule d'argile que l'on remplit d'eau. Ce cas-test est la déclinaison du cas test WTNA110 à une géométrie plane.

Manuel de validation

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Version

1 Problème de référence

1.1 Géométrie

hauteur : H = 1 mlargeur L = 1 m

1.2 Propriétés du matériau

Propriétés élastiques :

$$E = 150 \, 10^6 \, Pa$$

 $v = 0.3$

Paramètres spécifiques au modèle ELAS GONF :

 $\beta_m = 0.1142$ Pression de référence A = 1. Mpa

Propriétés hydrauliques :

Eau liquide	Masse volumique ($kg.m^{-3}$)	1.10 ³
	Chaleur à pression constante (LK^{-1})	4180
		10-4
	coefficient de dilatation thermique du liquide (K^{-1})	5.10 ⁻¹⁰
	Compressibilité ($Pa-1$)	10 ⁻³
	Viscosité (Pa.s)	
Gaz	Masse molaire ($kg. Mol^{-1}$)	0,002
	Chaleur à pression constante (JK^{-1})	1000
	Viscosité (Pas)	9. 10 ⁻⁶
	Viscosite (1 u.s.)	
Squelette	Capacité calorifique à contrainte constante (JK^{-1})	1000
Constantes	Constante des gaz parfaits	8,315
Constantes Coefficients	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$)	8,315 2000
Constantes Coefficients homogénéisés	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$) Coefficient de Biot	8,315 2000 1
Constantes Coefficients homogénéisés	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$) Coefficient de Biot Paramètres du modèle de Van-Genuchten	8,315 2000 1
Constantes Coefficients homogénéisés	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$) Coefficient de Biot Paramètres du modèle de Van-Genuchten N	8,315 2000 1 1,61
Constantes Coefficients homogénéisés	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$) Coefficient de Biot Paramètres du modèle de Van-Genuchten N Pr(Mpa)	8,315 2000 1 1,61 16.10 ⁶
Constantes Coefficients homogénéisés	Constante des gaz parfaits Masse volumique homogénéisée ($kg.m^{-3}$) Coefficient de Biot Paramètres du modèle de Van-Genuchten N Pr(Mpa) Sr	8,315 2000 1 1,61 16.10 ⁶ 0

Fascicule v7.32 : Thermo-hydro-mécanique en milieu poreux non-saturé

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code_Aster Titre : WTNP119 – Modélisation plane du gonflement d'une a[] Responsable : Sylvie GRANET		Version default	
		Date : 14/06/2012 Page : 3/9 Clé : V7.32.119 Révision : 9120	Page : 3/9 Révision : 9120
État de	Porosité	0,366	
référence	Température (K)	303	
	Pression capillaire (Pa)	0.	
	Pression de gaz (Pa)	10	

1.3 Conditions initiales

À t=0 :

Pgaz = 1atm

S=0.5 (soit Pc=44.7 Mpa et $p_w=-44.6 Mpa$)

Contrainte totale nulle.

1.4 Conditions aux limites et chargements

Tous les déplacements sont bloqués au bord ($DX\!=\!DY\!=\!0$). Les flux sont nuls.

La saturation initiale est de 50%: on augmente la saturation et on suit l'évolution de la contrainte totale. Par définition, la pression de gonflement est la contrainte obtenue à resaturation complète.

Pour cela on impose sur l'ensemble du domaine un chargement en pression capillaire décroissant linéairement en $1s\,$ entre $\,44,7\,Mpa\,$ et $\,-10\,Mpa$.

2 Références bibliographiques

1 Gérard, P., Charlier R., Barnichon, J.D., Su, K. Shao, J-F, Duveau, G., Giot, R., Chavant, C. Collin, F. « Numerical modeling of coupled mechanics and gas transfert » Journal of Theoretical and Applied Mechanics, Sofia, 2008, vol. 38, No. 1, pp. 101-120.

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Date : 14/06/2012 Page : 4/9 Clé : V7.32.119 Révision : 9120

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation D_PLAN_HH2MS sur une unique maille QUAD8.

Coordonnées des nœuds du maillage (unitaire) :

Nœuds	X	Y
NI	0	0
N2	1	0
N3	1	1
N4	0	1
N5	0,5	0
<i>N6</i>	1	0,5
N7	0,5	1
N8	0	0,5

Une seconde est simulée par 500 pas de temps.

3.2 Résultats

La Figure 3.2-a montre l'évolution de la contrainte totale en fonction de la pression capillaire (homogène en tout point, le post-traitement est ici fait au nœud N3). Dans la partie saturée ($P_c \leq 0$) la diminution de la pression capillaire correspond à une augmentation de pression d'eau et la contrainte totale croît linéairement. On constate que la pente de la courbe est continue.

Les paramètres A et β_m ont été calculés de manière à retrouver une pression de gonflement de 7MPa. En effet, lorsque la saturation atteint 1 (ou la pression capillaire 0), la pression de gonflement est donnée par la formule suivante :

$$\frac{P_{gf}}{A} = \frac{\sqrt{\pi}}{2\sqrt{\beta_m}} + \frac{1}{2\beta_m}$$

On retrouve donc bien l'allure classique de la contrainte de gonflement et on vérifie que la courbe coupe bien l'axe des ordonnées ($P_c=0$) avec une valeur de 7 Mpa.

Fascicule v7.32 : Thermo-hydro-mécanique en milieu poreux non-saturé

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Date : 14/06/2012 Page : 5/9 Clé : V7.32.119 Révision : 9120

Figure 3.2-a test de gonflement

On rappelle sur la figure l'évolution de la pression capillaire en fonction du temps correspondant au chargement du problème :

Figure 3.2-b : pression capillaire (N3)

3.3 Grandeurs testées et résultats

Ce cas test n'a pas de valeur de référence, on en fait donc un cas de non régression. On effectue des tests sur deux valeurs :

N	Temps (s)	SIXX Aster
N3	0,6	$-4,56.10^{4}$
N3	0.8163	$-5,67.10^{6}$

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Version

4 Modélisation B

4.1 Caractéristiques de la modélisation

Même modélisation que la modélisation A mais en HH2MS, la succion étant imposée les résultats qui en dépendent ne changent pas.

4.2 Grandeurs testées et résultats

N	Temps (s)	SIXX Aster
N3	0,6	$-4,56.10^{4}$
N3	0.8163	$-5,67.10^{6}$

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Date : 14/06/2012 Page : 7/9 Clé : V7.32.119 Révision : 9120

5 Modélisation C

5.1 Caractéristiques de la modélisation

Même modélisation que la modélisation A mais en THH2MS, la succion étant imposée les résultats qui en dépendent ne changent pas.

5.2 Grandeurs testées et résultats

N	Temps(s)	SIXX Aster
N3	0,6	$-4,56.10^{4}$
N3	0.8163	$-5,67.10^{6}$

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET

6 Modélisation D

6.1 Caractéristiques de la modélisation

Même modélisation que la modélisation B mais en THHMS, la succion étant imposée les résultats qui en dépendent ne changent pas.

6.2 Grandeurs testées et résultats

N	Temps (s)	SIXX Aster
N3	0.6	$-4,56.10^{4}$
N3	0.8163	$-5,67.10^{6}$

Titre : WTNP119 – Modélisation plane du gonflement d'une a[...] Responsable : Sylvie GRANET Date : 14/06/2012 Page : 9/9 Clé : V7.32.119 Révision : 9120

Version

default

7 Modélisation E

7.1 Caractéristiques de la modélisation

Il s'agit dans cette modélisation de partir d'un état complètement désaturé (S=0,0099 au lieu de S=0,5 précédemment) afin de voir l'aptitude du code à traiter ce type de cas limite. Cela permet de valider les routines de régularisation de la perméabilité utilisées dans ce cas.

La loi de comportement hydraulique est $LIQU_AD_GAZ$, tout le reste est identique à la modélisation a (D_PLAN_HH2MS).

La pression capillaire en fonction du temps correspondant de la même manière au chargement du problème :

Figure 7.1-a : pression capillaire (N3)

7.2 Grandeurs testées et résultats

Le comportement est bien celui attendu et correspond à celui observé dans les simulations précédentes si ce n'est que la resaturation est logiquement plus tardive.

Ce cas test n'a pas de valeurs de référence, on en fait donc un cas de non régression.

On effectue des tests sur deux valeurs :

N	Temps (s)	SIXX Aster
<i>N</i> 3	0,8	0.
<i>N</i> 3	1	$-1,7.10^{7}$

Fascicule v7.32 : Thermo-hydro-mécanique en milieu poreux non-saturé