

Date : 01/03/2013 Page : 1/63 Clé : V6.05.106 Révision : 10570

SSNS106 – Endommagement d'une plaque en béton armé sous sollicitations variées avec la loi GLRC_DM

Résumé :

Ce test valide le modèle d'endommagement de plaque en béton armé GLRC_DM (voir [R7.01.32]) pour des chargements cycliques variés : traction/compression, flexion alternée, le cisaillement dans le plan et leurs combinaisons. Les analyses sont faites en statique (STAT_NON_LINE). Les résultats sont comparés avec ceux d'une modélisation multi-couches, dans laquelle on représente les aciers des nappes d'armature par l'élasticité et le béton par le modèle de comportement ENDO ISOT BETON (voir [R7.01.04]).

Ce test peut servir utilement de base de départ pour caler le paramétrage de ce modèle dans les diverses situations de chargement susceptibles de se produire en pratique.

Pour compléter, on traite deux modélisations avec kit entre comportement GLRC_DM et comportement élastoplastique avec écrouissage isotrope, afin de représenter l'apparition de déformations résiduelles comme attendu dans la réalité.

Les modélisations L et M testent la thermomécanique en prenant en compte des déformations thermiques équivalentes en terme d'efforts aux chargements mécaniques des modélisations A et B.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 2/63 Clé : V6.05.106 Révision : 10570

1 Problème de référence

1.1 Géométrie

Longueur : $\ell = 1.0 m$; Épaisseur : e = 0.1 m . Enrobage des nappes d'armature inférieure et supérieure : 0.01 m .

1.2 Propriétés du matériau

Tous les paramètres du modèle $GLRC_DM$, élastiques et non linéaires, sont identifiés à partir de tests correspondants dans les modélisations A et B, à l'exception du module de Young modifié dans le test D (cisaillement) afin de réduire l'erreur dans le domaine linéaire et ainsi mieux valider la partie endommagement.

C'est-à-dire qu'on identifie :

Module de Young effectif de membrane E^m_{eq}
Coefficient de Poisson effectif de flexion v_m
Module de Young effectif de flexion $E^{f}_{\acute{e}q}$
Coefficient de Poisson effectif de membrane v_f
Effort membranaire du seuil de fissuration en traction $N_{D}^{}$ (noté $NYT_{\rm GLRC}^{}$)
Coefficient d'endommagement en traction γ_{mt}
Moment fléchissant du seuil de fissuration en flexion (M_{D} noté ${\it MYF}_{\rm GLRC}$)
Coefficient d'endommagement en flexion γ_f

Ces paramètres sont calculés à partir des caractéristiques des matériaux acier (modèle élastoplastique E_a , σ_e^{acier} , E_{ecr}^{acier}) et béton (via le modèle <code>ENDO_ISOT_BETON</code> E_b , v_b , γ_{EIB} , *SYT*_{EIB}, voir [R7.01.09]), et vérifiés par calage à partir de la modélisation A et grâce à la modélisation *B*.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 3/63 Clé : V6.05.106 Révision : 10570

Au bilan, voici les valeurs des caractéristiques des matériaux et des paramètres GLRC DM
--

modéligation	A at D	<u> </u>		F	<u> </u>	L Lot L	K
modelisation	AelB	C	DelE	F	G	H, Tel J	n
E _a , MPa	200000	200000	200000	200000	200000	200000	200000
σ_e^{acier} , MPa	570	570	570	4.5	11	570	570
E_{ecr}^{acier} , MPa	300	300	300	3570	4251	300	300
E _b , MPa	32308	32308	32308	32308	32308	32308	32308
ν_b	0.2	0.2	0.2	0.2	0.2	0.2	0.2
D_SIGM_EPSI	$-0,2 \times E_b$	$-0,2\times E_b$	$-0,2 \times E_b$				
${\cal Y}_{EIB}$	5	5	5	5	5	5	5
SYT _{EIB} , MPa	3.4	3.4	3.4	3.4	3.4	3.4	3.4
$E^m_{\acute{e}q}$, MPa	35620	35700	32308	35700	42510	35625	35620
$E^{f}_{\acute{e}q}$, MPa	38700	38700	38700	35700	73200	38660	38700
v _m	0.18	0.18	0.18	0.18	0.16	0.18	0.18
ν_f	0.17	0.17	0.17	0.18	0.12	0.17	0.17
γ_{mt}	0.02	0.02	0.02	0.1	0.225	0.02	0.02
γ_c	1	1	1	1	1	1	0,02
γ_f	0.32	0.32	0.32	0.1	0.6	0.32	0.32
NYT _{GLRC} , N/m	370000	370000	370000	370000	360000	370000	370000
MYF_{GLRC}, N	9000	9000	9000	5000	1600	9000	9000
α_{c}	1	1	1	1	1	1	100

<u>Remarque</u>: on note que la valeur de γ_{EIB} , cf. [R7.01.04], est comparable à l'inverse de celle utilisée dans la loi GLRC_DM, cf. [R7.01.32].

1.3 Conditions aux limites et chargements

On considère différentes modélisations *A*, *B*, *C*, *D* et *E* pour différents types de chargements caractéristiques et différents comportements de la plaque. Dans tous les cas, les chargements sont des déplacements (rotations) imposés aux bords de la plaque différemment pour chaque modélisation.

Les modélisations considérées sont :

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 4/63 Clé : V6.05.106 Révision : 10570

modélisation G(§ 9) : traction – compression pure – avec « kit_ddl » de comportement élastoplastique endommageable (GLRC_DM + Von Mises) ; modélisation H(§10) : traction – compression – traction pure, sollicitations élevées ;

modélisation I(§10) : flexion pure alternée, sollicitations élevées ; modélisation J(§12) : couplage traction – compression et flexion, sollicitations élevées ; modélisation K(§13) : compression - traction avec ALPHA C=100 ;

1.4 Conditions initiales

Au départ les déplacements et les contraintes valent zéro partout.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 5/63 Clé : V6.05.106 Révision : 10570

Version

default

2 Solution de référence

La solution de référence est obtenue par une modélisation semi-globale en plaque multi-couches, où le maillage et le chargement sont les mêmes que pour les modélisations avec la loi GLRC_DM correspondantes.

On modélise le béton et les armatures séparément. Pour chaque nappe d'armatures, on considère une couche qui se comporte uniquement dans le sens longitudinal des armatures. Donc on aura 4 couches pour les armatures.

De plus, plusieurs résultats analytiques avec le modèle GLRC DM ont pu être établis.

2.1 Modèles

Sur le même maillage on définit 5 modèles représentant la plaque en béton armé : 1 modèle DKT pour le béton et 4 modèles GRILLE pour les armatures (2 suivant la direction X, 2 suivant la direction Y pour les parties inférieure et supérieure). Le taux de ferraillage pour chaque nappe d'armatures est de $8.0 \times 10^{-4} m^2/m$.

La position des armatures (inférieure ou supérieure) est définie par le mot clé EXCENTREMENT sous le mot clé facteur GRILLE dans l'opérateur AFFE_CARA_ELEM, qui vaut $\pm 0.04 m$. La fissuration du béton est modélisée par la loi de comportement ENDO_ISOT_BETON, tandis qu'on suppose que l'acier reste toujours dans le domaine élastique.

2.2 Propriétés des matériaux

Béton (modèle ENDO_ISOT_BETON) :

- Module de Young: $E_{h} = 32308.0 MPa$
- Coefficient de Poisson : $v_{h} = 0.20$

Seuil d'endommagement en traction simple SYT EIB : 3.4 MPa

Pente adoucissante : $-0.2 E_{h}$ ($\gamma_{EIB} = 5$).

Acier :

Module de Young : $E_a = 200000.0 MPa$ Limite de linéarité σ_e^{acier} : 570.0 MPa Pente post-élastique $E_{\acute{e}crouis}^{acier}$: = 0.0015 $E_a = 300 MPa$.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 6/63 Clé : V6.05.106 Révision : 10570

3 Modélisation A

3.1 Caractéristiques de la modélisation

Traction - compression - traction pure.

Figure 3.1-a: maillage et conditions aux limites.

Modélisation : DKTG Conditions aux limites :

- Encastrement en A_1 ;
- DX = 0.0 sur l'arête $A_1 A_3$;
- $DX = U_0 \times f(t)$ sur l'arête $A_2 A_4$;

où $U_0 = 2.0 \times 10^{-4} m$ et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t. Pour bien vérifier le modèle, on considère deux fonctions de chargement comme suit :

Figure 3.1-b: Fonctions de chargement f1 (gauche) et f2 (droite).

Note : la déformation extrémale est : 2.0×10^{-4} , soit bien en-deçà du passage en plasticité des aciers. Pas de temps d'intégration : 0.05 .

3.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

Manuel de validation

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 7/63 Clé : V6.05.106 Révision : 10570

3.3 Solution analytique simple

En plus du calcul de référence, on fait un calcul analytique très simple pour vérifier le modèle ainsi que le logiciel. Pour ce faire, on considère une poutre homogène em traction-compression dont les propriétés des matériaux sont les mêmes que celles de la plaque homogène. On impose les mêmes conditions aux limites sur la poutre. Puis en considérant la loi de comportement considérée (élastique endommageable en traction et élastique linéaire en compression), on calcule la force FX correspondante à DX imposé.

3.4 Valeurs testées et résultats pour la fonction de chargement f1

On compare les forces de réactions moyennes selon l'axe Ox et les déplacements moyens selon l'axe Oy obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Tolérance
TRACTION - PHASE ELASTIQUE $t=0,25$			
Différence relative des forces FX en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
Différence relative des déplacements DY en	AUTRE_ASTER	0	5 10 ⁻²
A2-A4 TRACTION - PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des forces FX en $A2-A4$	AUTRE_ASTER	0	1,2 10 ⁻¹
Différence relative des déplacements DY en	AUTRE_ASTER	0	1,7 10 ⁻¹
A2-A4 TRACTION - PHASE DECHARGEMENT $t=1,5$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	AUTRE_ASTER AUTRE_ASTER	0 0	1,2 10 ⁻¹ 1,7 10 ⁻¹
A2-A4 COMPRESSION - PHASE CHARGEMENT (toujours élastique) $t=3,0$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	AUTRE_ASTER AUTRE_ASTER	0 0	5 10 ⁻² 1,7 10 ⁻¹
A2-A4 COMPRESSION - PHASE DECHARGEMENT $t=3,5$			
Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	AUTRE_ASTER AUTRE_ASTER	0 0	5 10 ⁻² 1,7 10 ⁻¹

```
A2 - A4
```

Code Aster

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 8/63 Clé: V6.05.106 Révision : 10570

Diagrammes comparés force FX (efforts N_{yx}) – déplacement DX en traction/compression pour le chargement fl :

Diagrammes comparés déplacement DY (dû à l'effet de Poisson) en fonction du temps :

DY - Temps

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Version default

Code_Aster	Version default
Titre : SSNS106 - Endommagement d'une plaque plane sous so[] Responsable : Sébastien FAYOLLE	Date : 01/03/2013 Page : 9/63 Clé : V6.05.106 Révision : 10570
Diagrammes de l'évolution de l'endommagement du mo	dèle <code>glrc_dm</code> (d_1 pour la face

supérieure et d_2 pour la face inférieure) en fonction du temps :

A partir des variables d'endommagement, on teste également l'énergie dissipée qui s'écrit : [R7.01.32 §2.7]

 $E = k_0 \times (d_1 + d_2)$ avec ici $k_0 = 8.89910 J/m^2$ L'énergie dissipée a donc le même profil que la courbe ci-dessus.

3.5 Valeurs testées et résultats pour la fonction de chargement f2

On compare les forces moyennes de réaction selon l'axe Ox et les déplacements moyens selon l'axe Oy obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives ; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	tolérance
COMPRESSION - PHASE ELASTIQUE $t=0,25$			
Différence relative des efforts N_{xx} en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
Différence relative des déplacements DY en	AUTRE_ASTER	0	5 10 ⁻²
A2-A4 COMPRESSION - PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des efforts N_{xx} en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
Différence relative des déplacements DY en	AUTRE_ASTER	0	5 10 ⁻²
A2 - A4 COMPRESSION - PHASE DECHARGEMENT $t = 1,5$		0	F 10 ⁻²
Différence relative des efforts N_{xx} en $A2 - A4$	AUTRE_ASTER	0	5 10 2
Différence relative des déplacements DY en	AUTRE_ASTER	0	5 10-2
A2-A4 TRACTION - PHASE CHARGEMENT (toujours élastique) $t=3,0$	Fooderstone & OF + Station	a nan linkaira dan - Iar	
	rascicule vo.05 : Statique	e non imeaire des plaq	ues el ues coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code_Aster			Version default
Titre : SSNS106 - Endommagement d'une plaque plane sous Responsable : Sébastien FAYOLLE	s so[]	Date : 01/03/2013 Clé : V6.05.106	Page : 10/63 Révision : 10570
Différence relative des efforts N_{xx} en $A2-A4$	AUTRE_ASTER	R 0	1,2 10 ⁻¹
Différence relative des déplacements DY en	AUTRE_ASTER	R 0	1,7 10 ⁻¹
A2 - A4 TRACTION - PHASE DECHARGEMENT $t=3,5$			
Différence relative des efforts N_{xx} en $A2-A4$	AUTRE_ASTER	R 0	1,2 10 ⁻¹
Différence relative des déplacements DY en	AUTRE_ASTER	R 0	1,7 10 ⁻¹
A2 - A4			

Diagrammes comparés FX (efforts N_{xx}) – déplacement DX en traction/compression pour le chargement f2 ::

Diagrammes comparés déplacement DY (dû à l'effet de Poisson) en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code_Aster		Version default
Titre : SSNS106 - Endommagement d'une plaque plane sous so[]	Date : 01/03/2013	Page : 11/63
Responsable : Sébastien FAYOLLE	Clé : V6.05.106	Révision : 10570

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

3.6 Remarques

D'après les courbes précédentes, on constate que le modèle GLRC_DM représente le comportement global du béton armé en traction – compression pure d'une manière satisfaisante. L'erreur relative du modèle GLRC_DM par rapport à la solution de référence est admissible. Il faut noter que la différence entre le modèle GLRC_DM et ENDO_ISOT_BETON est la plus importante durant la phase d'endommagement : le comportement du béton en traction est alors adoucissant et on trouve une pente négative dans le modèle de référence multi-couche, malgré le ferraillage (couches d'acier et couches ENDO_ISOT_BETON) alors que l'une des hypothèses du modèle GLRC_DM est de ne pas modéliser l'adoucissement du béton armé.

Étant basé sur l'hypothèse du matériau équivalent isotrope (voir [R7.01.32]), le modèle GLRC_DM surestime légèrement l'effet de Poisson.

On vérifie aussi la symétrie de la réponse selon le sens choisi de charge en compression-traction ou l'inverse, selon le chargement fl ou f2.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 12/63 Clé : V6.05.106 Révision : 10570

4 Modélisation B

4.1 Caractéristiques de la modélisation

Flexion pure alternée.

limites

Modélisation : DKTG Conditions aux limites :

• DRY = 0.0 sur l'arête $A_1 - A_3$

+ $DRY\!=\!R_{0}\!\times\!f\left(t\right)\,$ sur l'arête $\,A_{2}\!-\!A_{4}$,

où $R_0 = 6 \times 10^{-3}$ et f(t) est l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t, Pour bien vérifier le modèle, on considère trois fonctions de chargements comme :

Figure 4.1-d: Deux cycles de flexion alternée

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Version default

Version

Note : la déformation extrémale des aciers est : 2.4×10^{-3} , soit en-deçà du passage en plasticité des aciers. Incrément d'intégration : 0.05 s.

4.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3.

4.3 Solution analytique simple

En plus du calcul de référence, on fait un calcul analytique très simple pour vérifier le modèle ainsi que le code. Pour ce faire, on considère une poutre homogène dont les propriétés des matériaux sont les mêmes que celles de la plaque homogène. On impose les mêmes conditions aux limites sur la poutre. Puis en considérant la loi de comportement considérée (élastique endommageable en traction et élastique linéaire en compression), on calcule la force MY correspondante à DRY imposé.

4.4 Grandeurs testées et résultats pour la fonction de chargement f1

On compare les moments moyens selon l'axe Oy et les rotations moyennes selon l'axe Ox obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives ; certaines tolérances sont prises en valeur absolue, d'autres en valeurs relatives (à partir d'une valeur de non-régression, elles sont alors notées « R »), sur ces différences relatives :

	lde	entifica	ation		Type de référence	Valeur de référence	Tolérance	
FLEXION $t = 0.25$	POSITIV	E -	PHASE	ELASTIC	QUE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	5 10 ⁻²
A2 – A4 Différence	relative	des	rotations	DRX	en	NON_REGRESSION	5.17840782 10 ⁻³	1 10 ⁻⁶
A2 - A4 FLEXION		SITIVE $t=1$	-	PHA	ASE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	7 10 ⁻²
A2 – A4 Différence	relative	des	rotations	DRX	en	NON_REGRESSION	0.1490673	1 10 ⁻⁶
A2 - A4 FLEXION F	POSITIVE	- PHA	ASE DECH	IARGEME	ENT			
Différence	relative	des	moments	$M_{_{yy}}$	en	AUTRE_ASTER	0	7 10 ⁻²
A2 - A4 Différence in FLEXION t = 2.25	relative des NEGATIV	s rotati /E -	ons DRX e PHASE	n A2-A ELASTIC	4 QUE	NON_REGRESSION	0.1490673	1 10 ⁻⁶
Différence	relative	des	moments	$M_{_{yy}}$	en	AUTRE_ASTER	0	5 10 ⁻²
A2 - A4 Différence A2 - A4	relative	des	rotations	DRX	en	NON_REGRESSION	0.2755444	1 10 ⁻⁶

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code	_As	ste	r					Version default
Titre : SSNS1 Responsable :	106 - Endo Sébastie	ommag n FAY	ement d'une OLLE	e plaque j	plane	sous so[]	Date : 01/03/2013 Clé : V6.05.106	Page : 14/63 Révision : 10570
FLEXION ENDOMMA	NEG GEMENT	SATIVE $t=3$,	= - 0	PHA	ASE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	7 10 ⁻²
A2 – A4 Différence	relative	des	rotations	DRX	en	NON_REGRESSION	0.62151906	1 10 ⁻⁶
A2 - A4 FLEXION N t=3.5	IEGATIVE	E - PH	ASE DECH	ARGEME	ENT			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	7 10 ⁻²
A2 - A4 Différence A2 - A4	relative	des	rotations	DRX	en	NON_REGRESSION	0.62151905	1 10 ⁻⁶

Diagrammes comparés moment/rotation en flexion cyclique pour le chargement fl:

Diagrammes comparés rotation DRX (due à l'effet de Poisson) en fonction du temps pour le chargement fl:

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code Aster

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 15/63 Clé : V6.05.106 Révision : 10570

Diagrammes de l'évolution de l'endommagement du modèle GLRC DM (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Grandeurs testées et résultats pour la fonction de chargement f2 4.5

On compare les moments moyens selon l'axe Oy et les rotations moyennes selon l'axe Ox obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle GLRC DM, en terme de différences relatives ; certaines tolérances sont prises en valeur absolue, d'autres en valeurs relatives (à partir d'une valeur de non-régression, elles sont alors notées « R »), sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Tolérance
FLEXION POSITIVE - PHASE ELASTIQUE $t=0,25$			
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
Différence relative des rotations DRX en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
FLEXION POSITIVE - PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	7 10 ⁻²
Différence relative des rotations DRX en $A2-A4$	AUTRE_ASTER	0	1.5 10 ⁻¹
FLEXION POSITIVE - PHASE DECHARGEMENT $t=1,5$			
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	7 10 ⁻²
Différence relative des rotations DRX en $A2-A4$	AUTRE_ASTER	0	1.5 10
FLEXION NEGATIVE - PHASE ELASTIQUE $t=2,25$			-
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	5 10 ⁻²
Différence relative des rotations DRX en $A2-A4$ FLEXION NEGATIVE - PHASE ENDOMMAGEMENT t=3.0	NON_REGRESSION	0.2755444	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	7 10 ⁻²
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	0.6215190	1 10 ⁻⁶
		60	
FLEXION NEGATIVE - PHASE DECHARGEMENT $t=3,5$			
Différence relative des moments M_{yy} en $A2-A4$	AUTRE_ASTER	0	7 10 ⁻²
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	0.6215190	1 10 ⁻⁶

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

On vérifie bien que ces résultats sont identiques à ceux obtenus avec le chargement fl (en sens opposé).

4.6 Grandeurs testées et résultats pour la fonction de chargement f3

On compare les moments moyens selon l'axe Oy et les rotations moyennes selon l'axe Ox obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle GLRC_DM, en terme de différences relatives :

	lde	entifica	ation		Type de référence	Valeur de référence	Toléranc e	
FLEXION $t=4.25$	POSITIVE	Ξ -	PHASE	ELASTIC	QUE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
A2 – A4 Différence	relative	des	rotations	DRX	en	AUTRE_ASTER	0	5 10 ⁻²
A2 - A4 FLEXION ENDOMMA	POS GEMENT	SITIVE $t=5$	-	PH	ASE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
A2 – A4 Différence	relative	des	rotations	DRX	en	AUTRE_ASTER	0	1.5 10 ⁻¹
A2 - A4 FLEXION F	POSITIVE	- PH/	ASE DECH	IARGEM	ENT			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
<i>A2 – A4</i> Différence	relative	des	rotations	DRX	en	AUTRE_ASTER	0	1.5 10 ⁻¹
A2 - A4 FLEXION t = 2.25	NEGATIV	Έ-	PHASE	ELASTIC	QUE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
<i>A2 – A4</i> Différence	relative	des	rotations	DRX	en	NON_REGRESSION	0.2755444	1 10 ⁻⁶
A2-A4 FLEXION ENDOMMA	NEG GEMENT	ATIVE $t=3$.	= - 0	PH	ASE			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
<i>A2 – A4</i> Différence	relative	des	rotations	DRX	en	NON_REGRESSION	0.621519060	1 10 ⁻⁶
A2 - A4 FLEXION N t=3.5	IEGATIVE	- PH	ASE DECH	IARGEM	ENT			
Différence	relative	des	moments	M_{yy}	en	AUTRE_ASTER	0	8 10 ⁻²
A2 - A4 Différence	relative	des	rotations	DRX	en	NON_REGRESSION	0.621519050	1 10 ⁻⁶

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code_Aster	
------------	--

Date : 01/03/2013 Page : 17/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés rotation DRX (due à l'effet de Poisson) en fonction du temps pour le chargement f3:

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

On constate que le second cycle de flexion alternée ne provoque pas de nouvel endommagement, comme prévisible.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 18/63 Clé : V6.05.106 Révision : 10570

4.7 Remarques

En considération des courbes précédentes, on trouve qu'avec un recalage précis des paramètres du modèle $GLRC_DM$, les résultats du modèle $GLRC_DM$ sont très proches de ceux du calcul de référence. Cela veut dire que le modèle $GLRC_DM$ peut bien représenter le comportement des dalles en béton armé en flexion pure alternée. Il faut noter qu'au niveau de la rotation suivant X (due à l'effet de Poisson), après apparition de l'endommagement, la différence entre les deux modèles apparaît nettement au détriment de la réponse fournie par le modèle $GLRC_DM$ (basé sur l'hypothèse du matériau équivalent isotrope, voir [R7.01.32]).

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 19/63 Clé : V6.05.106 Révision : 10570

Version

default

5 Modélisation C

5.1 Caractéristiques de la modélisation

Couplage de traction - compression et flexion.

Figure 5.1-a: Maillage et conditions aux limites

Modélisation : DKTG

Conditions aux limites : couplage de Traction – Compression et Flexion :

- DX = 0.0 et DRY = 0.0 sur l'arête $A_1 A_3$
- + $DX = U_0 \times f(t)$ et $DRY = R_0 \times f(t)$ sur l'arête $A_2 A_4$,

où $U_0 = 1.5 \times 10^{-4}$, $R_0 = 5. \times 10^{-3}$ et f(t) est l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t. On considère deux types de chargement :

•La même fonction fl de chargement pour la membrane et la flexion (cas synchrone) :

Figure 5.1-b: fonction de chargement f1

•La fonction f^2 de chargement de membrane deux fois plus rapide que celui de flexion (en pratique les fréquences de membrane d'une dalle sont supérieures à celles de flexion) :

traction-compression

pour la flexion

Nota : la déformation extrémale des aciers est 2.15×10^{-3} , soit en-deçà du passage en plasticité des aciers. Incrément d'intégration : 0.05 s.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 20/63 Clé : V6.05.106 Révision : 10570

5.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 $\tt TRIA3$; 8 $\tt SEG2.$

5.3 Grandeurs testées et résultats : premier chargement (même fonction de chargement pour membrane et flexion)

On compare les forces moyennes selon l'axe Ox, les déplacements moyens selon l'axe Oy, les moments moyens selon l'axe Oy et les rotations moyennes selon l'axe Ox obtenus par la modélisation multi-couches s (référence) et par celle reposant sur le modèle <code>GLRC_DM</code>, en terme de différences relatives; les tolérances sont prises en valeur relative sur ces différences relatives (non-régression):

Identification	Type de référence	Valeur de référence	Tolérance
PHASE ELASTIQUE $t=0,25$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.0308768	1 10 ⁻⁶
Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	$6.800 \ 10^{-3}$	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	0.0506625	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	0.0456055	1 10 ⁻⁶
PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.6199769	1 10 ⁻⁶
Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	1.0302274	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	1.1531708	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	4.3790440	1 10 ⁻⁶
PHASE DECHARGEMENT $t=1,5$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.6199769	1 10 ⁻⁶
Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	1.0302272	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	1.1531708	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	4.3790437	1 10 ⁻⁶
PHASE ELASTIQUE $t=2,25$			
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.279039	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	-0.045021	1 10 ⁻⁶
PHASE RECHARGEMENT $t=3,0$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.0725839	1 10 ⁻⁶
Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	0.5134477	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.305571	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	-0.074300	1 10 ⁻⁶
PHASE DECHARGEMENT $t=3,5$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.0725839	1 10 ⁻⁶
Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	0.5134477	1 10 ⁻⁶
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.305571	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	-0.074300	1 10 ⁻⁶

Code_Aster	Versi defa	ion ult
Titre : SSNS106 - Endommagement d'une plaque plane sous so[] Responsable : Sébastien FAYOLLE	Date : 01/03/2013 Page : 21/63 Clé : V6.05.106 Révision : 105	70
Diagrammes comparés de la force FX (efforts N_{xx}) – imposé pour le chargement $\mathit{f1}$:	en fonction du déplacement	DX

Diagrammes comparés du moment $M_{_{yy}}\,$ en fonction de la rotation DRY imposée pour le chargement $fl\,$:

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 22/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés rotation DRX (dû à l'effet de Poisson) pour le chargement fl:

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 23/63 Clé : V6.05.106 Révision : 10570

5.4 Grandeurs testées et résultats : deuxième chargement (membrane deux fois plus rapide que flexion)

On compare les forces moyennes selon l'axe Ox, les déplacements moyens selon l'axe Oy, les moments moyens selon l'axe Oy et les rotations moyennes selon l'axe Ox obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle <code>GLRC_DM</code>, en terme de différences relatives; les tolérances sont prises en valeur relative sur ces différences relatives (non-régression) :

Identification	Type de référence	Valeur de référence	Toléranc e
PHASE ELASTIQUE $t=0,2$			
Différence relative des efforts $N_{\rm rr}$ en $A2-A4$	NON_REGRESSION	0.076636834	1 10 ⁻⁶
Différence relative des déplacements DY en	NON_REGRESSION	0.04157561	1 10 ⁻⁶
A2-A4			
PHASE ELASTIQUE $t=0,25$			
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	0.704009303	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$ PHASE ENDOMMAGEMENT $t=0,5$	NON_REGRESSION	0.598054490	1 10 ⁻⁶
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.123330386	1 10 ⁻⁶
Différence relative des déplacements DY en	NON_REGRESSION	0.255062957	1 10 ⁻⁶
A2-A4			
PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.07043058	1 10 ⁻⁶
	NON DECDEGATON	7	4 4 9 - 6
Difference relative des rotations DKX en $A2 - A4$ DHASE DECHADCEMENT $t = 1.5$	NON_REGRESSION	0.4691///65	1 10 °
Différence relative des efforts N en $42-44$	NON REGRESSION	0.011450607	1 10 ⁻⁶
Différence relative des déplacements DY en	NON REGRESSION	0.341544237	$1 \ 10^{-6}$
	—		
A2 - A4 Différence relative des memorts M on $A2 - A4$	NON REGRESSION	-0 40261933	1 10-6
Différence relative des moments M_{yy} en $A_2 - A_4$	NON_REGRESSION	0.418428062	$1 10^{-6}$
PHASE ELASTIQUE $t=2.25$		0.110120002	1 10
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.20854202	1 10 ⁻⁶
Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	0.194832056	1 10 ⁻⁶
PHASE ELASTIQUE $t=2,5$			
Différence relative des efforts N_{xx} en $A2-A4$	NON_REGRESSION	0.444039545	1 10 ⁻⁶
Différence relative des déplacements DY en	NON_REGRESSION	0.621203835	1 10 ⁻⁶
A2-A4			
PHASE RECHARGEMENT $t=3,0$			
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.01497317	1 10 ⁻⁶
Différence relative des rotations DRX en $A2 - A4$	NON_REGRESSION	0.363498924	1 10 ⁻⁶
PHASE DECHARGEMENT $t=3,5$	NON DECDECCION	0 058262000	1 10-6
Difference relative des efforts N_{xx} en $A2-A4$	NON DECDEGGION	0.178662007	L LU ~ 1 10 ⁻⁶
Difference relative des deplacements DY en	NON_KEGKESSION	0.11000398/	T TO °
A2 - A4			~
Différence relative des moments M_{yy} en $A2-A4$	NON_REGRESSION	-0.33210745	1 10-6
Différence relative des rotations DRX en $A2 - A4$	NON_REGRESSION	-0.23297047	1 10 ⁻⁶
vianuel de validation	rascicule v6.05 : Statiqu	ie non lineaire des plac	jues et des coque

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Version

FX - DX 6.0E+05 4 0E+05 2 0E+05 FX(N) 0.0E+00 -2.0E+05 -4.0E+05 -6.0E+05 FX_multicouche FX_GLRC -8.0E+05 1.0E-04 1.5E-04 -2.0E-04 -1.5E-04 -1.0E-04 -5.0E-05 0.0E+00 5 0E-05 2 0E-04 DX(m)

Diagrammes comparés de la force FX (efforts N_{xx}) – en fonction du déplacement DX imposé pour le chargement f2:

Diagrammes comparés moment M_{yy} en fonction de la rotation DRY imposée pour le chargement f2:

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 25/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés déplacement DY (dû à l'effet de Poisson) pour le chargement f2:

Diagrammes comparés rotation DRX (dû à l'effet de Poisson) pour le chargement f2:

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 26/63 Clé : V6.05.106 Révision : 10570

Remarques

Ces résultats sont obtenus en utilisant les paramètres matériau qui ont été identifiés à partir des tests *A* (pour les paramètres de membrane) et *B* (pour les paramètres de flexion). Bien que les résultats du modèle GLRC_DM en traction – compression pure et en flexion pure soient très satisfaisants par rapport au calcul de référence multicouche, l'erreur du modèle GLRC_DM en couplage de membrane – flexion dans la phase non-linéaire est notable. On constate que la réponse en phase élastique est juste et que la différence est due au critère d'apparition de l'endommagement. Par référence aux courbes, on constate qu'en couplage de membrane – flexion, les seuils d'endommagement (N_D et

 $M_{\ D}$) déjà identifiés à partir des tests traction-compression pure et la flexion pure, donnent une surestimation en cas de couplage flexion-membrane par rapport à la solution de référence. Cela engendre une erreur notable dans les phases suivantes.

On propose d'abaisser les valeurs de N_D et M_D de 10% afin de diminuer cette erreur-là. (cf. [R7.32.01] modèle GLRC DM, § 3.2.1).

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 27/63 Clé : V6.05.106 Révision : 10570

Version

default

6 Modélisation D

6.1 Caractéristiques de la modélisation

Distorsion et cisaillement pur dans le plan.

Figure 6.1-a: Maillage et conditions aux limites

Modélisation : DKTG. L = 1.0 m.

Conditions aux limites (voir figure ci-dessus à droite) de telle sorte que la plaque soit soumise à une distorsion pure : ε_{xy} doit être constant ou à un cisaillement pur : on applique des efforts. Par conséquent, on applique le champ de déplacement suivant sur les bords de la plaque pour la distorsion :

$$\begin{cases} u_x = D_0 \cdot y \\ u_y = D_0 \cdot x \end{cases} \Rightarrow \epsilon = \frac{1}{2} (u_{x, y} + u_{y, x}) = D_0 \end{cases}$$

Donc :

•on impose un encastrement en ${\it A}_1$,

•
$$u_x = D_0 \cdot y$$
 , $u_y = 0$ sur l'arête $A_1 - A_3$, $u_x = 0$, $u_y = D_0 \cdot x$ sur l'arête $A_1 - A_2$,

• $u_x = D_0 \cdot y$, $u_y = D_0 \cdot L$ sur l'arête $A_2 - A_4$, $u_x = D_0 \cdot L$, $u_y = D_0 \cdot x$ sur l'arête $A_3 - A_4$,

où $D_0 = 3.310^{-4}$ et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t, définie comme :

Fonction de chargem ent

Figure 6.1-b: fonction de chargement

Incrément d'intégration : 0.05 s.

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

•

•

6.2

on impose $F_v = D_0$ sur $A_2 A_4$,

on impose $F_x = D_0 \text{ sur } A_4 A_3$, on impose $F_y = -D_0 \text{ sur } A_3 A_1$,

on impose $F_x = -D_0$ sur $A_1 A_2$,

Pour le cisaillement, on applique les efforts suivants :

Caractéristiques du maillage

Nœuds : 121. Mailles : 200 TRIA3 ; 40 SEG2.

6.3 Grandeurs testées et résultats

Pour la distorsion, on compare l'effort tranchant N_{xy} obtenu par les deux modélisations ; les tolérances sont prises en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Toléranc e
DISTORSION POSITIF - PHASE ELASTIQUE $t=0,25$			
Différence relative des efforts N_{xy} en B	AUTRE_ASTER	0	5 10 ⁻²
ENDOMMAGEMENT $t=1,0$ - PHASE			
Différence relative des efforts N_{xy} en B	AUTRE_ASTER	0	7 10 ⁻²
t=1,5			
Différence relative des efforts N_{xy} en B	AUTRE_ASTER	0	7 10 -2
DISTORSION NEGATIF - PHASE CHARGEMENT $t=3,0$			
Différence relative des efforts N_{xy} en B	AUTRE_ASTER	0	7 10 ⁻²
DISTORSION NEGATIF - PHASE DECHARGEMENT $t=3,5$			
Différence relative des efforts N_{xy} en B	AUTRE_ASTER	0	7 10 ⁻²

Diagramme effort tranchant N_{xy} (dans le plan) en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Version default

Date : 01/03/2013 Page : 28/63 Clé : V6.05.106 Révision : 10570

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 29/63 Clé : V6.05.106 Révision : 10570

Diagramme effort tranchant $N_{_{XV}}$ (dans le plan) en fonction de D_0 imposé :

Diagramme de l'évolution de l'endommagement du modèle <code>glrc_dm</code> ($d_1 \!=\! d_2$) en fonction du temps :

Pour le cisaillement, on fait des tests de non régression sur les déformations de cisaillement $\epsilon_{_{XY}}$:

Identification	Type de référence	Valeur de référence	Toléranc e
CISAILLEMENT POSITIF - PHASE ELASTIQUE $t=0,1$			
Déformations de cisaillemen ε_{xy} en B	NON_REGRESSION	3,013 10 ⁻¹⁵	1 10 ⁻⁶
DISTORSION POSITIF - PHASE D ENDOMMAGEMENT $t=0,8$			
Déformations de cisaillemen $ \epsilon_{_{XY}} $ en $ B $	NON_REGRESSION	2,410 10 ⁻¹⁴	7 10 ⁻²

6.4 Remarques

Afin d'avoir un meilleur accord entre le modèle $GLRC_DM$ et la référence (modèle multicouche) en distorsion pure, il a été nécessaire de modifier le module de Young de E=35620 MPa à E=42500 MPa par rapport aux modélisations A,B,C, sachant qu'en distorsion pure les aciers ne sont pas chargés.

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 30/63 Clé : V6.05.106 Révision : 10570

On vérifie que l'effort tranchant obtenu avec *Code_Aster* à l'instant t=0,37427, juste à apparition du premier endommagement produit la valeur théorique élastique :

$$N_{xy}^{D} = 2 \frac{\sqrt{2\mu_{m}k_{0}}}{\sqrt{2-\gamma_{mc}-\gamma_{mt}}} = \frac{N_{D}}{1+\nu_{m}} \sqrt{\frac{(1-\nu_{m})(1+2\nu_{m})(1-\gamma_{mt})+\nu_{m}^{2}(1-\gamma_{mc})}{2-\gamma_{mc}-\gamma_{mt}}}$$

soit: $N_{xy}^D = 331128 N/m$.

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code Aster

Titre : SSNS106 - Endommagement d'une plague plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 31/63 Clé : V6.05.106 Révision : 10570

Modélisation E 7

7.1 Caractéristiques de la modélisation

Couplage flexion - cisaillement dans le plan.

Figure 7.1-a: maillage

Modélisation : DKTG. L = 1.0 m. Conditions aux limites (voir figure ci-dessous) :

Figure 7.1-b: Conditions aux limites

 $\bullet {\rm on}$ impose un encastrement en $A_1\,$, et

• $u_x = D_0 \cdot y$, $u_y = 0$ sur l'arête $A_1 - A_3$, $u_x = 0$, $u_y = D_0 \cdot x$ et DRY = 0.0 sur l'arête $A_1 - A_2$

• $u_x = D_0 \cdot y$, $u_y = D_0 \cdot L$ et DRY = $R_0 \times f(t)$ sur l'arête $A_2 - A_4$, $u_x = D_0 \cdot L$, $u_y = D_0 \cdot x$ sur l'arête $A_3 - A_4$,

où $D_0 = 1.110^{-4} \cdot f(t)$, $R_0 = 6.010^{-3}$ et f(t) représentent l'amplitude du chargement cyclique en onction du paramètre (de pseudo-temps) t, définie comme : Fonction de chargem ent

7.2 Caractér

non linéaire des plaques et des coques

nl)

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 32/63 Clé : V6.05.106 Révision : 10570

Nombre de nœuds : 121. Nombre de mailles : 200 $\tt TRIA3$; 40 $\tt SEG2.$

7.3 Grandeurs testées et résultats

On évalue par des tests de non-régression à divers instants les résultats obtenus par la modélisation GLRC_DM :

Identification	Type de référence	Valeurs de référence	tolérance
À t=1,0			
Déplacement DX en $A2$	NON_REGRESSION	0	1 10 ⁻⁶
Déplacement DZ en A2	NON_REGRESSION	-3.0 10 ⁻³	$1 \ 10^{-4}$
Effort N_{yy} en $A2$	NON_REGRESSION	15058.8134864	1 10 ⁻⁴
Variable d'endommagement $d1$ en $A1$	NON_REGRESSION	0.0	$1 \ 10^{-4}$
Variable d'endommagement $d2$ en $A1$	NON_REGRESSION	1.178108	1 10 ⁻⁴
À $t = 2,8$			
Déplacement DX en $A4$	NON_REGRESSION	-8.8 10 ⁻⁵	$1 \ 10^{-4}$
Déplacement DZ en $A4$	NON_REGRESSION	1.9504378 10 ⁻³	$1 \ 10^{-4}$
Effort N_{yy} en $A4$	NON_REGRESSION	-12047.0496585	1 10 ⁻⁴
Variable d'endommagement $d1$ en $A1$	NON_REGRESSION	0.75196363	$1 \ 10^{-4}$
Variable d'endommagement $d2$ en $A1$	NON_REGRESSION	1.178108	$1 \ 10^{-4}$
À $t = 3,0$			
Variable d'endommagement $d1$ en $A1$	NON_REGRESSION	1.162571	1 10 ⁻⁴
Variable d'endommagement $d2$ en $A1$	NON_REGRESSION	1.178108	1 10 ⁻⁴

Diagrammes comparés modèle multicouche-modèle GLRC_DM moment fléchissant M_{yy} en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code_Aster	Version default
<i>Titre : SSNS106 - Endommagement d'une plaque plane sous so[]</i>	Date : 01/03/2013 Page : 33/63
Responsable : Sébastien FAYOLLE	Clé : V6.05.106 Révision : 10570

Diagrammes comparés modèle multicouche-modèle ${\tt GLRC_DM}$ effort tranchant N_{xy} en fonction du temps :

Diagrammes comparés modèle multicouche-modèle glrc_DM de l'effort tranchant moment fléchissant $N_{x\!y}$ en fonction de la distorsion :

MY - RY

1,5E+03 1,0E+03 5,0E+02 MY(N.m) 0,0E+00 -5,0E+02 -1,0E+03 MY_multicouche - MY_GLRC -1,5E+03 2,0E-03 -6,0E-03 -4,0E-03 -2,0E-03 0,0E+00 4,0E-03 6,0E-03 RY

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 34/63 Clé : V6.05.106 Révision : 10570

Diagramme de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 , d_2) en fonction du temps :

Diagramme de l'évolution de la densité surfacique d'énergie dissipée (en J/m^2) du modèle GLRC_DM en fonction du temps :

On vérifie, confer [R7.01.32], qu'avec les données du cas-test, on a : $k_0 = 9,81138260345866 J/m^2$, d'où les densités surfaciques d'énergie dissipée :

Instant	d_1	d_{2}	énergie dissipée J/m^2
t = 2,0 s	0.0000	1.1781	11.5589
t = 4,0 s	1.1626	1.1781	22.9653

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Version default

Date : 01/03/2013 Page : 35/63 Clé : V6.05.106 Révision : 10570

8 Modélisation F

Traction – compression pure comportement élastoplastique endommageable (${\tt GLRC_DM}$ + Von Mises).

Dans ce test, on s'intéresse au comportement élastoplastique. On peut insérer un comportement plastique à la réponse du modèle GLRC_DM via un "kit" qui permet de mettre en série le modèle GLRC_DM avec un modèle plastique de Von Mises classique. Ce kit consiste à imposer le même tenseur des contraintes aux deux modèles et à cumuler les deux tenseurs des déformations.

8.1 Caractéristiques de la modélisation

Figure 8.1-a: maillage et conditions aux limites

Modélisation : DKTG. L = 1.0 m.

Conditions aux limites :

- Encastrement en A_1 ;
- DX = 0.0 sur l'arête $A_1 A_3$;
- $DX = U_0 \times f(t)$ sur l'arête $A_2 A_4$;

où $U_0 = 3.0 \times 10^{-3} m$ et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t comme suit :

Incrément d'intégration : $8,50 \times 10^{-3}$.

8.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 36/63 Clé : V6.05.106 Révision : 10570

8.3 Grandeurs testées et résultats

Identification	Type de référence	Valeur de référence	Toléranc e
À $t=0.017$ traction - phase élastique			
Déplacement DY en A4	NON_REGRESSION	1.44237 10 ⁻²	1 10 ⁻⁴
Effort membranaire $N_{\rm rr}$ en A4	AUTRE_ASTER	0	5 10 ⁻³
À $t=0.085$ traction - phase endommagement			
Déplacement DY en A4	NON_REGRESSION	-4.84715 10 ⁻¹	1 10 ⁻⁴
Effort membranaire $N_{\rm rec}$ en $A4$	NON_REGRESSION	-3.460140	1 10 ⁻⁴
		10-3	
À $t=0,085$ traction - phase plasticité + endommagement		10	
Effort membranaire N_{xx} en $A4$	NON_REGRESSION	-0.069405040	1 10 ⁻⁴
À $t=2,04$ traction - phase décharge			
Effort membranaire N_{xx} en $A4$ À $t=0.017$ traction phase élastique	NON_REGRESSION	-1.11050 10+5	1 10 ⁻⁴
Densité d'énergie de déformation totale dans la dalle	NON_REGRESSION	4.642785	1 10 ⁻⁵
en <i>A2</i> Densité d'énergie de déformation membranaire dans	NON_REGRESSION	4.642785	1 10 ⁻⁵
la dalle en $A2$ Densité d'énergie de déformation totale dans la dalle	NON_REGRESSION	4.642785	1 10 ⁻⁵
maille MI Densité d'énergie de déformation de flexion dans la	AUTRE_ASTER	0	1 10 ⁻¹³
dalle maille $M1$			
Densité d'énergie de déformation totale dans la dalle en 42	NON_REGRESSION	48.15097	1.5 10 ⁻¹
Densité d'énergie de déformation totale dans la dalle	NON_REGRESSION	48.15097	1.5 10 ⁻¹
maille $M1$ Densité d'énergie de déformation de flexion dans la	AUTRE_ASTER	0	1 10 ⁻¹³
dalle maille $M1$ À $t=1,0$ fin de charge Densité d'énergie de déformation de flexion dans la	AUTRE_ASTER	0	1 10 ⁻¹³
dalle maille $M1$ À $t=0.017$ traction - phase élastique			
Énergie de déformation dans la dalle	NON REGRESSION	4.642785	1 10 ⁻⁵
Travail extérieur	NON_REGRESSION	4.642785	1 10 ⁻⁵
À $t=0.085$ traction - phase endommagement	—		
Énergie de déformation dans la dalle	NON_REGRESSION	54.78	2 10 ⁻²
Travail extérieur	NON_REGRESSION	54.78	2 10 ⁻²
À $t=1,0$ fin de charge Énergie de déformation dans la dalle	NON_REGRESSION	817.14	2.5 10 ⁻³

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 37/63 Clé : V6.05.106 Révision : 10570

9 Modélisation G

9.1 Caractéristiques de la modélisation

Cisaillement pur dans le plan comportement élastoplastique endommageable (${\tt GLRC_DM}$ + Von Mises).

Figure 9.1-a: maillage

Modélisation : DKTG. L = 1.0 m. Conditions aux limites (voir figure ci-dessous) :

Figure 9.1-b: conditions aux limites

- on impose un encastrement en A_1 ,
- $u_x = D_0 \cdot y$, $u_y = 0$ sur l'arête $A_1 A_3$, $u_x = 0$, $u_y = D_0 \cdot x$ et DRY = 0.0 sur l'arête $A_1 A_2$,
- $u_x = D_0 \cdot y$, $u_y = D_0 \cdot L$ et sur l'arête $A_2 A_4$, $u_x = D_0 \cdot L$, $u_y = D_0 \cdot x$ sur l'arête $A_3 A_4$,

où $D_0 = 1.110^{-4} \cdot f(t)$, et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t, définie comme (incrément d'intégration : 5.0×10^{-5}):

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 38/63 Clé : V6.05.106 Révision : 10570

Version

default

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE

9.2 Caractéristiques du maillage

Nombre de nœuds : 121. Nombre de mailles : 200 TRIA3 ; 40 SEG2.

9.3 Grandeurs testées et résultats

Identification	Type de référence	Valeurs de référence	tolérance
À <i>t</i> =0,25			
Déplacement DY en A4	AUTRE_ASTER	0	2,5 10 ⁻¹
Effort membranaire N_{yy} en $A4$	AUTRE_ASTER	0	5 10 ⁻²
À <i>t</i> =1,0			
Effort membranaire $N_{_{VV}}$ en $A4$	NON_REGRESSION	3353.497694	1,0 10 ⁻⁴
À t=2,0			
Déplacement DX en $A4$	NON_REGRESSION	-0.2487559789	1,0 10 ⁻⁴
Effort membranaire $N_{_{VV}}$ en $A4$	NON_REGRESSION	0.2670950681	1,0 10 ⁻⁴
À <i>t</i> =2,0			
Effort membranaire N_{yy} en $A4$	NON_REGRESSION	-2577.113397	1,0 10 ⁻⁴
À t=3,0			
Effort membranaire $N_{_{VV}}$ en $A4$	NON_REGRESSION	25.02051934	1,0 10 ⁻⁴

Manuel de validation

Version default

Date : 01/03/2013 Page : 39/63 Clé : V6.05.106 Révision : 10570

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE
 default

 Date : 01/03/2013
 Page : 40/63

 Clé : V6.05.106
 Révision : 10570

Version

10 Modélisation H

10.1 Caractéristiques de la modélisation

T rac tion - Compression pures.

Figure 10.1-a: maillage et conditions aux limites.

Modélisation : DKTG Conditions aux limites :

- Encastrement en A_1 ;
- DX = 0.0 sur l'arête $A_1 A_3$;
- $DX = U_0 \times f(t)$ sur l'arête $A_2 A_4$;

où $U_0 = 1.0 \times 10^{-3} m$ et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t. Pour bien vérifier le modèle, on considère une fonction de chargement comme suit :

Figure 10.1-b: fonction de chargement : traction, puis compression

Note : la déformation extrémale est : 1.0×10^{-3} , soit environ le tiers de la déformation de passage en plasticité des aciers. Pas de temps d'intégration : 0.025 .

10.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 41/63 Clé : V6.05.106 Révision : 10570

Version

default

10.3 Solution de référence LABORD_1D

En plus de la solution de référence multicouches présentée au §2, on crée une seconde solution de référence à l'aide de la loi de comportement LABORD_1D [R7.01.07]. Cette seconde solution de référence est obtenue par une modélisation 1D en poutre multi-fibres, où le chargement est le même que celui des solutions multi-couches et GLRC_DM. On modélise le béton et les armatures séparément.

Cette solution découlant d'un calcul 1D, elle ne pourra pas prendre en compte les effets de poisson.

La longueur de la poutre est prise égale à 1m tandis que sa section est de $1 \ge 0.1m$ afin de correspondre aux dimensions de la plaque utilisée pour le calcul multi-couches et global.

10.3.1 Maillages et modèles

Il est nécessaire de définir deux maillages :

- un maillage 1D longitudinal de la poutre, comprenant 2 nœuds et 1 élément (POU D EM).

- un maillage 2D de la section transversale de béton.

Figure 10.3-b: maillage section pour LABORD_1D

Au maillage 1D, on associe le modèle de poutre multi-fibres. Le « maillage » 2D n'est en fait que la représentation des fibres utilisées pour le calcul multi-fibres. Sur ce « maillage », on va ajouter deux fibres d'acier à l'aide de l'opérateur <code>DEFI_GEOM_FIBRE</code> et du mot-clé facteur <code>FIBRE</code>. La surface de chaque fibre d'armatures est de $8.0 \times 10^{-4} m^2$ et leur position dans l'épaisseur est $(0.0,\pm0.04\,m)$

La fissuration du béton est modélisée par la loi de comportement LABORD_1D, tandis qu'on suppose que l'acier reste toujours dans le domaine élastique.

10.3.2 Propriétés des matériaux

Béton (modèle LABORD_1D) :

Module de Young : $E_b = 32308.0 MPa$

Coefficient de Poisson : $v_{b} = 0.0$

Seuil initial d'endommagement en traction (positif) : $Y_{01} = 341.0 J.m^{-3}$

Seuil initial d'endommagement en compression (positif) : $Y_{02} = 7075.0 J.m^{-3}$

Contrainte de refermeture totale des fissures en compression : $\sigma_f = 3.5 MPa$ Paramètres caractéristiques du matériau :

$$A_1 = 0.01038$$
; $A_2 = 0.599910^{-5}$
 $B_1 = 1.2$; $B_2 = 2.0$

$$\beta_1 = 0.867 MPa$$
; $\beta_2 = -35 MPa$

Acier :

Module de Young : $E_a = 200000.0 \ MPa$ Limite de linéarité σ_e^{acier} : 570.0 MPa

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 42/63 Clé : V6.05.106 Révision : 10570

Pente post-élastique $E_{\acute{e}crouis}^{acier}$: = 0.0015 E_a = 300 MPa.

10.4 Valeurs testées et résultats

On compare les forces de réactions moyennes selon l'axe O_x et les déplacements moyens selon l'axe O_y obtenus par la modélisation multi-couches (référence), par la modélisation multi-fibres (référence 2) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Tolérance
TRACTION - PHASE ELASTIQUE $t=0.25$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	0.195288585	1 10 ⁻⁶
ENDO ISOT			
Différence relative des forces FX en B LABORD 1D	NON_REGRESSION	1.95338104	1 10 ⁻⁶
Différence relative des déplacements DY en $\overline{A2} - A4$	NON_REGRESSION	0.33511651	1 10 ⁻⁶
ENDO ISOT			
TRACTION - PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	0.38598977	1 10 -6
ENDO ISOT			
Différence relative des forces FX en B LABORD_1D	NON_REGRESSION	0.35971002	1 10 ⁻⁶
TRACTION - PHASE DECHARGEMENT $t=1,5$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	0.385989778	1 10 -6
ENDO ISOT			
Différence relative des forces FX en B LABORD 1D	NON_REGRESSION	14.04965198	4. 10 -5
COMPRESSION - PHASE CHARGEMENT (toujours			
élastique) $t=2,5$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	0.078395170	1 10 -6
ENDO ISOT			
Différence relative des forces FX en B LABORD 1D	NON_REGRESSION	-0.06578026	1 10 -6
COMPRESSION - PHASE DECHARGEMENT $t=\overline{3},5$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	0.078395170	1 10 -6
ENDO ISOT			
Différence relative des forces FX en B LABORD_1D	NON_REGRESSION	0.101212612	1 10 -6

Date : 01/03/2013 Page : 43/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés force FX (efforts N_{xx}) – déplacement DX en traction/compression pour le chargement f:

Diagrammes comparés déplacement DY (dû à l'effet de Poisson) en fonction du temps :

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 44/63 Clé : V6.05.106 Révision : 10570

10.5 Remarques

Le cas test effectué ici vise à tester GLRC_DM sous des sollicitations assez importantes pour qu'apparaisse effectivement la reprise de raideur des aciers sur les références EIB et LABORD_1D. Ce cas test reprend le cas test SSNS106A en ajoutant la référence LABORD_1D afin de comparer le modèle global GLRC_DM avec un modèle adoucissant prenant en compte un comportement du béton plus proche de la réalité (refermeture de fissures, comportement adoucissant, dissymétrie tractioncompression). On remarque alors sur la courbe Efforts-déplacements que la réponse donnée par GLRC_DM se rapproche des réponses données par les deux références.

On remarque d'autre part sur la courbe des déplacements DY dûs à l'effet de poisson, de grandes différences entre la courbe <code>GLRC_DM</code> et la courbe <code>EIB</code>. Ceci s'explique par le fait que les déplacements DY sont calculés, dans le calcul multi-couches (<code>EIB</code>) sur les couches de béton, or la sollicitation appliquée est telle que le béton arrive à sa ruine aux alentours de l'instant 0.1.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 45/63 Clé : V6.05.106 Révision : 10570

11 Modélisation I

11.1 Caractéristiques de la modélisation

Flexion pure alternée.

Figure 11.1-a: maillage et conditions aux limites

Modélisation : DKTG Conditions aux limites :

- DRY = 0.0 sur l'arête $A_1 A_3$
- + $DRY = R_0 \times f(t)$ sur l'arête $A_2 A_4$,

où $R_0 = 3.0 \times 10^{-2}$ et f(t) est l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t.

Pour vérifier le modèle, on considère la fonction de chargement suivante :

Figure 11.1-b: fonction de chargement

11.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

11.3 Solution de référence LABORD_1D

En plus de la solution de référence multicouches présentée au §2, on crée une seconde solution de référence à l'aide de la loi de comportement LABORD_1D [R7.01.07]. Cette seconde solution de référence est obtenue par une modélisation 1D en poutre multi-fibres, où le chargement est le

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 46/63 Clé : V6.05.106 Révision : 10570

Version

default

même que celui des solutions multi-couches et GLRC_DM. On modélise le béton et les armatures séparément.

Cette solution découlant d'un calcul $\ 1D$, elle ne pourra prendre en compte les effets de poisson.

La longueur de la poutre est prise égale à 1m tandis que sa section est de $1 \ge 0.1m$ afin de correspondre aux dimensions de la plaque utilisée pour le calcul multi-couches et global.

11.3.1 Maillages et modèles

Il est nécessaire de définir deux maillages :

- un maillage 1D longitudinal de la poutre, comprenant 2 nœuds et 1 élément (POU_D_EM).

- un maillage 2D de la section transversale de béton.

Figure 11.3-b: maillage section pour LABORD_1D

Au maillage 1D, on associe le modèle de poutre multi-fibres. Le « maillage » 2D n'est en fait que la représentation des fibres utilisées pour le calcul multi-fibres. Sur ce « maillage », on va ajouter deux fibres d'acier à l'aide de l'opérateur DEFI_GEOM_FIBRE et du mot-clé facteur FIBRE. La surface de chaque fibre d'armatures est de $8.0 \times 10^{-4} m^2$ et leur position dans l'épaisseur est $(0.0, \pm 0.04 m)$

La fissuration du béton est modélisée par la loi de comportement LABORD_1D, tandis qu'on suppose que l'acier reste toujours dans le domaine élastique.

11.3.2 Propriétés des matériaux

Béton (modèle LABORD_1D) :

Module de Young : E_{h} =32308.0 MPa

Coefficient de Poisson : $v_b = 0.00$

Seuil initial d'endommagement en traction (positif) : $Y_{01} = 341.0 J.m^{-3}$

Seuil initial d'endommagement en compression (positif) : $Y_{02} = 7075.0 J.m^{-3}$

Contrainte de refermeture totale des fissures en compression : $\sigma_f = 3.5 MPa$ Paramètres caractéristiques du matériau :

$$A_1 = 0.01038$$
; $A_2 = 0.5999E - 5$
 $B_1 = 1.2$; $B_2 = 2.0$
 $\beta_1 = 0.867 MPa$; $\beta_2 = -35 MPa$

Acier :

Module de Young : $E_a = 200000.0 \ MPa$ Limite de linéarité σ_e^{acier} : 570.0 MPaPente post-élastique $E_{\acute{e}rouis}^{acier}$: =0.0015 $E_a = 300 \ MPa$.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 47/63 Clé : V6.05.106 Révision : 10570

11.4 Valeurs testées et résultats

On compare les forces de réactions moyennes selon l'axe Ox et les déplacements moyens selon l'axe Oy obtenus par la modélisation multi-couches (référence), par la modélisation multi-fibres (référence 2) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Toléranc e
FLEXION POSITIVE - PHASE ELASTIQUE $t=0.25$			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	-0.131037	1 10 ⁻⁶
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	0.263299	1 10 ⁻⁶
LABORD_1D Différence relative des rotations DRX en $A2-A4$	NON_REGRESSION	0.056251	1 10 ⁻⁶
ENDO_ISOT FLEXION POSITIVE - PHASE ENDOMMAGEMENT t=1.0			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	-0.0093348	1 10 -6
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	-0.012608	1 10 ⁻⁶
LABORD_1D FLEXION POSITIVE - PHASE DECHARGEMENT t=1.5			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	-0.0093348	1 10 -6
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	0.414629	1 10 -6
LABORD_1D FLEXION NEGATIVE - PHASE ELASTIQUE $t = 2,25$ Différence relative des moments MY en $A2 - A4$	NON_REGRESSION	0.116694	1 10 -6
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	0.352502	1 10 -6
LABORD_1D FLEXION NEGATIVE - PHASE ENDOMMAGEMENT t=3.0			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	0.0011557	1 10 -6
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	-0.011571	1 10 -6
LABORD_1D FLEXION NEGATIVE - PHASE DECHARGEMENT t=3.5			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	0.0011558	1 10 -6
ENDO_ISOT Différence relative des moments MY en B	NON_REGRESSION	0.290645	1 10 -6
LABORD 1D			

1

Titre : SSNS106 - Endommagement d'une plaque plane sous so[…] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 48/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés moment MY – rotation DRY en flexion alternée pour le chargement f

Diagrammes comparés rotation *DRX* (dû à l'effet de Poisson) en fonction du temps :

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Révision : 10570

Date : 01/03/2013 Page : 49/63

Clé : V6.05.106

11.5 Remarques

Le cas test effectué ici vise à tester GLRC_DM sous des sollicitations assez importantes pour qu'apparaisse effectivement la reprise de raideur des aciers sur les références EIB et LABORD_1D. Ce cas test reprend le cas test SSNS106B en ajoutant la référence LABORD_1D afin de comparer le modèle global GLRC_DM avec un modèle adoucissant prenant en compte un comportement du béton plus proche de la réalité (refermeture de fissures, comportement adoucissant, dissymétrie traction-compression). On remarque alors sur la courbe moments-rotations que la réponse donnée par GLRC_DM se rapproche des réponses données par les deux références.

On peut faire la même remarque qu'au §10.6 sur les rotations DRX cette fois, en effet, les rotations, pour le modèle multi-couches sont elles aussi calculées sur le béton et deviennent donc nulles une fois la ruine du béton atteinte. On constate par ailleurs que la dissipation calculée par GLRC_DM se situe entre celle calculée par EIB et celle calculée par LABORD 1D.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE
 default

 Date : 01/03/2013
 Page : 50/63

 Clé : V6.05.106
 Révision : 10570

Version

12 Modélisation J

12.1 Caractéristiques de la modélisation

Couplage de Traction - Compression et Flexion.

Figure 12.1-a: maillage et conditions aux limites

Modélisation : DKTG

Conditions aux limites : couplage de Traction - Compression et Flexion :

• DX = 0.0 et DRY = 0.0 sur l'arête $A_1 - A_3$

•
$$DX = U_0 \times f(t)$$
 et $DRY = R_0 \times f(t)$ sur l'arête $A_2 - A_4$,

où $U_0 = 1. \times 10^{-3}$, $R_0 = 3. \times 10^{-2}$ et f(t) est l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t.

On considère le chargement suivant :

La même fonction f de chargement pour la membrane et la flexion :

Figure 12.1-b: fonction de chargement

12.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

12.3 Solution de référence LABORD_1D

On se reportera à la solution de référence LABORD_1D expliquée pour la modélisation H (§10) de traction-compression pures.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 51/63 Clé : V6.05.106 Révision : 10570

12.4 Valeurs testées et résultats

On compare les forces de réactions moyennes selon l'axe Ox et les déplacements moyens selon l'axe Oy obtenus par la modélisation multi-couches (référence), par la modélisation multi-fibres (référence 2) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeurs de référence	Toléranc e
TRACTION-FLEXION POSITIVE - PHASE ELASTIQUE			
t=0,25 Différence relative des effects EV on 42 44	NON REGRESSION	0 942464	1 10-6
		0.912101	1 10
ENDO_ISOT	NON REGRESSION	2 324003	1 10-6
Différence relative des moments MY en $A2-AA$	NON_REGRESSION	0.760269	$1 10^{-6}$
		0.,00200	1 10
Différence relative des moments MY en B	NON_REGRESSION	0.957721	1 10 ⁻⁶
LABORD_1D Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION	1.984216	1 10 ⁻⁶
ENDO_ISOT			
TRACTION-FLEXION POSITIVE - PHASE ENDOMMAGEMENT $t=1,0$			
Différence relative des efforts FX en $A2-A4$	NON_REGRESSION	1.310623	1 10 -6
ENDO_ISOT			
Différence relative des efforts FX en B LABORD_1D	NON_REGRESSION	1.229502	1 10 ⁻⁶
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	0.159191	1 10 -6
ENDO_ISOT			
Différence relative des moments MY en B	NON_REGRESSION	0.247438	1 10 ⁻⁶
LABORD_1D TRACTION-FLEXION POSITIVE - PHASE DECHARGEMENT $t=1.5$			
Différence relative des efforts FX en $A2-A4$	NON REGRESSION	1.310623	1 10 -6
ENDO ISOT	—		
Différence relative des efforts FX en B LABORD 1D	NON REGRESSION	-340.6072	1 10 -6
Différence relative des moments MY en $A2-A4$	_ NON_REGRESSION	0.159191	1 10 -6
ENDO ISOT			
Différence relative des moments <i>MY</i> en <i>B</i>	NON_REGRESSION	0.498459	1 10 -6
LABORD 1D	_		
COMPRESSION-FLEXION NEGATIVE - PHASE			
ELASTIQUE $t=2,25$			
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	-0.697620	1 10 -6
ENDO ISOT			
Différence relative des moments <i>MY</i> en <i>B</i>	NON_REGRESSION	-0.719143	1 10 -6
LABORD_1D COMPRESSION-FLEXION NEGATIVE - PHASE			
ENDOMMAGEMENT $t=3,0$			-
Différence relative des efforts FX en $A2-A4$	NON_REGRESSION	0.052263	1 10 -6
ENDO_ISOT			
Différence relative des efforts FX en B LABORD_1D	NON_REGRESSION	0.346083	1 10 -6
Différence relative des moments MY en $A2-A4$	NON_REGRESSION	-0.685692	1 10 -6
Manuel de validation	Fascicule v6.05 : Statique no	on linéaire des plaque	es et des coqu <mark>e</mark> s

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Date : 01/03/2013 Page : 52/63 Responsable : Sébastien FAYOLLE Clé : V6.05.106 Révision : 10570 ENDO ISOT В NON REGRESSION -0.553360 1 10 -6 Différence relative des MYmoments en LABORD 1D FLEXION NEGATIVE - PHASE DECHARGEMENT t = 3,5NON REGRESSION 0.052263 1 10 -6 Différence relative des efforts FX en A2-A4ENDO ISOT Différence relative des efforts FX en B LABORD 1D NON REGRESSION 0.624842 1 10 -6 NON REGRESSION -0.685692 1 10 -6 Différence relative des moments MY en A2-A4ENDO ISOT NON REGRESSION 1 10 -6 Différence relative moments MY B -0.427322 des en LABORD 1D

Diagrammes comparés force FX – déplacement DX pour le chargement f :

Diagrammes comparés moment MY – rotation DRY pour le chargement f :

MY - DRY

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Manuel de validation

Code Aster

Date : 01/03/2013 Page : 53/63 Clé : V6.05.106 Révision : 10570

Diagrammes comparés déplacement DY (dû à l'effet de Poisson) en fonction du temps :

Diagrammes comparés rotation DRX (dû à l'effet de Poisson) en fonction du temps :

Diagrammes de l'évolution de l'endommagement du modèle GLRC DM (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Variables d'endommagement d1 & d2 - Temps

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 54/63 Clé : V6.05.106 Révision : 10570

12.5 Remarques

Le cas test effectué ici vise à tester GLRC_DM sous des sollicitations assez importantes pour qu'apparaisse effectivement la reprise de raideur des aciers sur les références EIB et LABORD_1D. Ce cas test reprend le cas test SSNS106C en ajoutant la référence LABORD_1D afin de comparer le modèle global GLRC_DM avec un modèle adoucissant prenant en compte un comportement du béton plus proche de la réalité (refermeture de fissures, comportement adoucissant, dissymétrie traction-compression). On remarque alors les efforts ultimes donnés par la modélisation GLRC_DM sont surestimés par rapport aux modèles EIB et LABORD_1D. D'autre part, on peut voir sur la courbe moment-rotation que le modèle global GLRC_DM ne reprend pas de raideur de flexion lors du rechargement en flexion négative et que cela mène à une sous estimation des moments mis en jeu.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE default
Date : 01/03/2013 Page : 55/63
Clé : V6.05.106 Révision : 10570

Version

13 Modélisation K

13.1 Caractéristiques de la modélisation

Compression - traction avec ALPHA C=100

Figure 13.1-a: maillage et conditions aux limites.

Modélisation : DKTG

Conditions aux limites :

- Encastrement en A_1 ;
- DX = 0.0 sur l'arête $A_1 A_3$;
- $DX = U_0 \times f(t)$ sur l'arête $A_2 A_4$;

où $U_0 = 2.0 \times 10^{-4} m$ et f(t) représentent l'amplitude du chargement cyclique en fonction du paramètre (de pseudo-temps) t. Pour bien vérifier le modèle, on considère deux fonctions de chargement comme suit :

Fonction de chargement f

Figure 13.1-b: Fonctions de chargement.

13.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

Manuel de validation

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 56/63 Clé : V6.05.106 Révision : 10570

Version

default

13.3 Valeurs testées et résultats

On compare les forces de réactions moyennes selon l'axe Ox et les déplacements moyens selon l'axe Oy obtenus par la modélisation multi-couches (référence) et par celle reposant sur le modèle $GLRC_DM$, en terme de différences relatives; la tolérance est prise en valeur absolue sur ces différences relatives :

Identification	Type de référence	Valeur de référence	Tolérance
Dissipation à $t=0.05$	ANALYTIQUE	0	5 10 ⁻²
Dissipation à $t=0,75$	NON_REGRESSION	254.9756	5 10 ⁻²
Dissipation à $t=1$	NON_REGRESSION	346.5721	5 10 ⁻²
COMPRESSION $t=0,25$			
Différence relative des forces FX en $A2-A4$	NON_REGRESSION	$4.046337 \ 10^5$	5 10 ⁻²
Différence relative des déplacements DY en	ANALYTIQUE	0	5 10 ⁻²
A2-A4 COMPRESSION $t=1,0$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	NON_REGRESSION ANALYTIQUE	5.204660 10⁵ 0	5 10 ⁻² 0.1
A2-A4 COMPRESSION $t=1,5$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	NON_REGRESSION ANALYTIQUE	-2.687820 10° 0	5 10 ⁻² 0.1
A2-A4 TRACTION $t=3,0$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en	NON_REGRESSION ANALYTIQUE	-4.175743 10 ⁶ 0	5 10 ⁻² 0.1
A2-A4 TRACTION $t=3,5$ Différence relative des forces FX en $A2-A4$ Différence relative des déplacements DY en $A2-A4$	NON_REGRESSION ANALYTIQUE	-2.087571 10 ⁶ 0	5 10 ⁻² 0.1

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

default Date : 01/03/2013 Page : 57/63

Version

Clé : V6.05.106 Révision : 10570

14 Modélisation L

14.1 Caractéristiques de la modélisation

Chargement température évolutif tel que la déformation thermique associée soit égale à la déformation mécanique de la modélisation A.

Figure 14.1-a: maillage et conditions aux limites.

Modélisation : DKTG

Conditions aux limites :

- Encastrement en A_1 ;
- DX = 0.0 sur l'arête $A_1 A_3$;
- $DX = U_0 \times f(t)$ sur l'arête $A_2 A_4$ avec ici $U_0 = 0.0$

Dans la modélisation A on avait $U_0 = 2.0 \times 10^{-4} m$

La thermique doit donc vérifier l'équation $-\alpha(T - T_{ref}) = DX = 2.0 \times 10^{-4} \times f(t)$ On prend $T_{ref} = 10$. $\alpha = 1.0 \times 10^{-5}$

Pour f(t)=1 on doit donc avoir T=-10. comme température dans la coque Pour f(t)=-1 on doit avoir T=30. et faire varier linéairement la température entre ces valeurs. Les deux fonctions de chargement sont les mêmes que pour la modélisation A :

Ici on les applique à la température.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 58/63 Clé : V6.05.106 Révision : 10570

14.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3 ; 8 SEG2.

14.3 Valeurs testées et résultats pour la fonction de chargement f1

On teste l'énergie dissipée qui a le même profil que pour la modélisation A.

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Variable d'endommagement d1 & d2 - Temps

A partir des variables d'endommagement, on teste également l'énergie dissipée qui s'écrit : [R7.01.32 §2.7] $E = k_0 \times (d_1 + d_2)$ avec ici $k_0 = 8.89910 J/m^2$ L'énergie dissipée a donc le même profil que la courbe ci-dessus.

14.4 Valeurs testées et résultats pour la fonction de chargement f2

Les variables d'endommagement d1 et d2 varient de la même façon que pour la modélisation A.

Manuel de validation

Fascicule v6.05 : Statique non linéaire des plaques et des coques

Code_Aster Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 59/63 Clé : V6.05.106 Révision : 10570

Manuel de validation

Version default

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 60/63 Clé : V6.05.106 Révision : 10570

15 Modélisation M

15.1 Caractéristiques de la modélisation

On applique une différence de température dans l'épaisseur telle que la flexion engendrée soit la même en terme d'efforts que celle de la modélisation B.

Figure 15.1-a: maillage et conditions aux limites

Modélisation : DKTG

- Conditions aux limites :
 - DRY = 0.0 sur l'arête $A_1 A_3$
 - $DRY = R_0 \times f(t)$ sur l'arête $A_2 A_4$ avec ici $R_0 = 0.0$

Dans la modélisation B on avait $R_0 = 6 \times 10^{-3}$

La thermique doit donc vérifier l'équation $-\alpha T_{gra} = DRY = 6 \times 10^{-3} \times f(t)$ avec $T_{gra} = (T_{su} - T_{inf})/e$ où e est l'épaisseur.

Pour f(t)=1. on doit donc avoir $T_{su}-T_{inf}=-60$. comme gradient dans l'épaisseur. Pour f(t)=-1. on doit avoir $T_{su}-T_{inf}=60$.

et faire varier linéairement la température entre ces valeurs.

Les 3 fonctions de chargement sont les mêmes que pour la modélisation B :

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE

Date : 01/03/2013 Page : 61/63 Clé : V6.05.106 Révision : 10570

Note : la déformation extrémale des aciers est : 2.4×10^{-3} , soit en-deçà du passage en plasticité des aciers. Incrément d'intégration : 0.05 s.

15.2 Caractéristiques du maillage

Nombre de nœuds : 9. Nombre de mailles : 8 TRIA3.

15.3 Grandeurs testées et résultats pour la fonction de chargement f1

Les variables d'endommagement d1 et d2 varient de la même façon que pour la modélisation B.

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

15.4 Grandeurs testées et résultats pour la fonction de chargement f3

Les variables d'endommagement d1 et d2 varient de la même façon que pour la modélisation B.

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE Date : 01/03/2013 Page : 62/63 Clé : V6.05.106 Révision : 10570

Diagrammes de l'évolution de l'endommagement du modèle $GLRC_DM$ (d_1 pour la face supérieure et d_2 pour la face inférieure) en fonction du temps :

Variables d'endommagement d1 & d2 - Temps

Titre : SSNS106 - Endommagement d'une plaque plane sous so[...] Responsable : Sébastien FAYOLLE
 default

 Date : 01/03/2013
 Page : 63/63

 Clé : V6.05.106
 Révision : 10570

Version

16 Synthèse des résultats

Ces tests ayant pour but de valider le modèle GLRC_DM servent aussi à montrer un certain nombre de ces faiblesses. En résumé les rôle des tests sont les suivants :

A : Tester uniquement le comportement en traction/compression sous la condition d'uniformité (quasi 1D). On identifie les paramètres membrane.

B : Tester uniquement le comportement en flexion cyclique sous la condition d'uniformité (quasi 1D). On identifie les paramètres flexion.

c: Tester le comportement couplant les phénomènes de membrane et de flexion sous la condition d'uniformité (quasi 1D).

D : Tester le comportement pour le cisaillement et la distorsion dans le plan

E : Tester le couplage de flexion et cisaillement dans le plan.

F: Tester le comportement traction – compression pure – avec « kit_dll » de comportement élastoplastique endommageable (GLRC_DM + Von Mises).

G: Tester le comportement traction – compression pure – avec « kit_ddl » de comportement élastoplastique endommageable (GLRC_DM + Von Mises).

H : Tester le comportement en traction-compression avec des sollicitations importantes pour évaluer les paramètres membrane identifiés dans le test A

I : Tester le comportement en flexion alternée avec des sollicitations importantes pour évaluer les paramètres flexion identifiés dans le test B

J: Tester le comportement en traction-flexion alternées avec des sollicitations importantes pour apprécier le comportement sous sollicitations couplées.

L : Tester un chargement température provoquant des déformations de membrane.

M : Tester un chargement température provoquant des déformations de flexion.

Dans la plupart des situations des modélisations A à E, les déplacements, les efforts et les moments prédits par le modèle GLRC_DM sont représentés avec une erreur modeste (<10%) par référence à un modèle multicouche, ce qui semble tout à fait satisfaisant pour un modèle ayant vocation à représenter le comportement « global » d'une structure. L'erreur plus importante est observée (~25%) lors des tests sur l'effet de Poisson dans la phase endommageante et lorsque l'endommagement est activé en membrane-flexion couplés. Le premier défaut est moins important si on s'intéresse plus à l'énergie dissipée dans le système et moins aux déplacements. Le deuxième défaut est plus gênant et montre bien qu'un modèle « global » optimal devrait toujours être calé par rapport à la sollicitation principale que l'on souhaite modéliser : on choisira en conséquence les paramètres du modèle. La contribution principale à l'erreur est probablement due à l'anisotropie du béton armé non prise en compte par le modèle (voir R7.01.32).

Les deux modélisations F et G où on évalue le « kit » GLRC_DM et élastoplasticité de Von Mises ont surtout une valeur démonstrative des possibilités offertes.

Les résultats de la modélisation L (resp. M) sont les mêmes que ceux de la modélisation A.