

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Version

### SSNV163 - Calcul de fluage propre avec les modèles BETON\_UMLV\_FP et BETON\_BURGER\_FP

#### Résumé :

Ce test permet de valider les modèles de fluage propre <code>BETON\_UMLV\_FP</code> et <code>BETON\_BURGER\_FP</code>. Les résultats de ce test sont comparés avec les solutions analytique (<code>BETON\_UMLV\_FP</code>) ou obtenue suivant un schéma d'intégration explicite (<code>BETON\_BURGER\_FP</code>) pour trois types de modélisations : 3D, axisymétrique et contraintes planes.

Modélisation A : Essai de fluage propre avec le modèle BETON\_UMLV\_FP et une modélisation 3D. Modélisation B : Essai de fluage propre avec le modèle BETON\_UMLV\_FP et une modélisation AXIS. Modélisation C : Essai de fluage propre avec le modèle BETON\_UMLV\_FP et une modélisation C\_PLAN. Modélisation D : Essai de fluage propre avec le modèle BETON\_BURGER\_FP et une modélisation 3D. Modélisation E : Essai de fluage propre avec le modèle BETON\_BURGER\_FP et une modélisation AXIS. Modélisation F : Essai de fluage propre avec le modèle BETON\_BURGER\_FP et une modélisation AXIS.

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 2/18 Clé : V6.04.163 Révision : 7921

### 1 Problème de référence

### 1.1 Géométrie



| hauteur :   | h = 1,00[m]  |
|-------------|--------------|
| largeur :   | l = 1,00 [m] |
| épaisseur : | e = 1.00 [m] |

### 1.2 Propriétés du matériau

E = 31 GPav = 0.2

Ici on renseigne aussi la courbe sorption-désorption qui relie la teneur en eau C à l'hygrométrie h. Dans ce cas on a supposé que les valeurs numériques de C et de h sont les mêmes.

Paramètres spécifiques au fluage propre de **BETON\_UMLV\_FP** :

| $k_r^s = 2,0E + 5 \ [MPa]$                    | partie sphérique : rigidité apparente associée au squelette formé par des blocs d'hydrates à l'échelle mésoscopique             |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $k_i^s = 5,0E + 4 \text{ [}MPa\text{]}$       | partie sphérique : rigidité apparente associée intrinsèquement aux hydrates à l'échelle microscopique                           |
| $k_r^d = 5,0E + 4 \ [MPa]$                    | partie déviatorique : rigidité associée à la capacité de l'eau adsorbée à transmettre des charges ( <i>load bearing water</i> ) |
| $\eta_r^s = 4,0E + 10$ [ <i>MPa.s</i> ]       | partie sphérique :viscosité apparente associée au mécanisme de diffusion au sein de la porosité capillaire                      |
| $\eta_i^s = 1,0E + 11$ [ <i>MPa.s</i> ]       | partie sphérique : viscosité apparente associée au mécanisme de diffusion interlamellaire                                       |
| $\eta_r^d = 1,0E + 10 \text{ [}MPa.s\text{]}$ | partie déviatorique :viscosité associée à l'eau adsorbée par les feuillets d'hydrates                                           |
| $\eta_i^d$ =1,0 <i>E</i> +11 [ <i>MPa.s</i> ] | partie déviatorique : viscosité de l'eau libre.                                                                                 |

Manuel de validation

Fascicule v6.04 : Statique non linéaire des structures volumiques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

| Code_Aster                                                             |                                                                             |                                      | Version<br>default             |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| Titre : SSNV163 - Calcul de fluage pro<br>Responsable : Marina BOTTONI | pre avec les modèles[]                                                      | Date : 14/12/2011<br>Clé : V6.04.163 | Page : 3/18<br>Révision : 7921 |
| Paramètres spécifiques au flu                                          | uage propre de BETON_BURGER_FP                                              |                                      |                                |
| $k_r^s = 2,0E + 5$ [ <i>MPa</i> ]                                      | partie sphérique : rigidité appare<br>réversible des déformations différée  | ente associée au<br>es               | domaine                        |
| $k_r^d = 5,0E + 4 \ [MPa]$                                             | partie déviatorique : rigidité asso<br>réversible des déformations différée | ciée associée au<br>es               | domaine                        |
| $\eta_r^s = 4,0E+10$ [ <i>MPa.s</i> ]                                  | partie sphérique :viscosité appare<br>réversible des déformations différée  | ente associée au<br>es               | domaine                        |
| $\eta_i^s$ = 1,0 <i>E</i> +11 [ <i>MPa.s</i> ]                         | partie sphérique : viscosité appare<br>de diffusion irréversible            | nte associée au m                    | nécanisme                      |

 $\eta_r^d = 1,0E + 10 \ [MPa.s]$  partie déviatorique :viscosité associée au domaine réversible des déformations différées

 $\eta_i^d = 1,0E + 11 \text{ [}MPa.s \text{ ]}$  partie déviatorique : viscosité apparente associée au mécanisme de diffusion irréversible  $\kappa = 3.0 \times 10^{-3}$  Norme des déformations irréversibles contrôlant la non linéarité appliquée sur le module des déformations à long terme

### 1.3 Conditions aux limites et chargements

Dans cet essai, on crée un champ de séchage homogène invariant dans la structure, l'humidité vaut 100% (condition d'une éprouvette scellée). Le chargement mécanique correspond à une compression unidirectionnelle suivant le direction verticale (z en 3D ou y en 2D); son intensité est de 1[MPa]. La charge est appliquée en 1s et est maintenue constante pendant 100 jours.

### 1.4 Conditions initiales

Le début du calcul est supposé l'instant -1. A cet instant il n'y a ni champ de séchage, ni contrainte mécanique.

A l'instant 0, on applique un champ de séchage correspondant à 100~% d'hygrométrie.

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Version

### 2 Solution de référence

#### 2.1 Solutions obtenues pour le modèle BETON\_UMLV\_FP

#### 2.1.1 Méthode de calcul

Cette section présente la résolution analytique complète du problème d'un corps d'épreuve soumis à un champ de contraintes homogènes et unidirectionnelles appliquées instantanément à l'instant initial et maintenues constantes par la suite (cas d'un essai de fluage en compression simple) :

$$\underline{\sigma} = \sigma_0 \underline{e}_z \otimes \underline{e}_z \qquad \text{éq 2.1-1}$$

Dont la décomposition en partie sphérique et déviatorique s'écrit :

$$\underbrace{\sigma}_{=}^{=} \frac{1}{3} \underbrace{\sigma_0 1}_{\square\square=}^{=} + \frac{2}{3} \underbrace{\sigma_0 \underline{e}_z \otimes \underline{e}_z - \frac{1}{3} \sigma_0 (\underline{e}_x \otimes \underline{e}_x + \underline{e}_y \otimes \underline{e}_y)}_{\text{partie}}$$
 eq 2.1-2 partie déviatorique

En opérant une décomposition sphérique/déviatorique identique à celle des contraintes, la déformation axiale s'écrit sous la forme :

$$\varepsilon_{zz} = \varepsilon^{fs} (\sigma_0/3) + \varepsilon^{fd} (2\sigma_0/3)$$
 éq 2.1-3

Il faut donc résoudre successivement la réponse à un échelon de contrainte sphérique et à un échelon de contraintes déviatoriques.

#### 2.1.2 Résolution des équations constitutives du fluage sphérique [bib2]

Le processus de déformation sphérique du fluage est gouverné par le système d'équations couplées suivant (équations [éq 2.2-1] et [éq 2.2-2], cf. [R7.01.06]) :

$$\dot{\varepsilon}^{fs} = \frac{1}{\eta_r^s} \cdot \left[ h \cdot \sigma^s - k_r^s \cdot \varepsilon_r^{fs} \right] - \dot{\varepsilon}_i^{fs} \qquad \text{éq 2.2-1}$$

où  $k_r^s$  désigne la rigidité apparente associée au squelette formé par des blocs d'hydrates à l'échelle mésoscopique ;

et  $\eta_r^s$  la viscosité apparente associée au mécanisme de diffusion au sein de la porosité capillaire.

$$\dot{\varepsilon}_{i}^{fs} = \frac{1}{\eta_{i}^{s}} \left\langle \left[ k_{r}^{s} \cdot \varepsilon^{fs} - \left( k_{r}^{s} + k_{i}^{s} \right) \cdot \varepsilon_{i}^{fs} \right] - \left[ h\sigma^{s} - k_{r}^{s} \cdot \varepsilon_{r}^{fs} \right] \right\rangle^{+}$$
 éq 2.2-1

où  $k_i^s$  désigne la rigidité apparente associée intrinsèquement aux hydrates à l'échelle microscopique ;

et  $\eta^s_i$  la viscosité apparente associée au mécanisme de diffusion interfoliaire.

Dans [éq 2.2-2], les crochets  $\langle \rangle^+$  désignent l'opérateur de Mac Cauley :  $\langle x \rangle^+ = \frac{1}{2} (x + |x|)$ 

La résolution du système d'équations couplées précédent nécessite de distinguer deux cas selon le signe de la quantité comprise entre les crochets de Mac Cauley. Dans la suite, on présente la résolution analytique de la réponse à un échelon de contrainte  $\sigma^s$ . L'humidité relative est supposée invariante ; le milieu est saturé en eau.

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 5/18 Clé : V6.04.163 Révision : 7921

#### 2.1.2.1 Cas du fluage à court terme

A l'instant initial, t=0, on applique une contrainte sphérique  $\sigma^s$  positive. Les déformations de fluage réversibles et irréversibles sont égales à zéro (conditions initiales). L'équation du système [éq 2.2-2] s'écrit donc :

$$\dot{\varepsilon}_i^{fs}(t=0) = \frac{1}{\eta_i^s} \left\langle \left[ 2 \cdot k_r^s \cdot 0 - k_i^s \cdot 0 - \sigma^s \right] \right\rangle^+ = \frac{1}{\eta_i^s} \left\langle \left[ -\sigma^s \right] \right\rangle^+ = 0 \qquad \text{éq 2.2.1-1}$$

La vitesse de déformation de fluage irréversible est donc égale à zéro. On en déduit que la déformation de fluage irréversible est aussi égale à zéro. La vitesse de déformation irréversible reste égale à zéro jusqu'à l'instant  $t = t_0$ , défini par la relation [éq 2.2.1-2] :

$$2 \cdot k_r^s \cdot \varepsilon_r^{fs}(t_0) - \sigma^s = 0 \Longrightarrow \varepsilon_r^{fs}(t_0) = \frac{\sigma^s}{2 \cdot k_r^s}$$
 éq 2.2.1-2

Jusqu'à l'instant  $t = t_0$ , la déformation de fluage réversible est définie par la relation suivante :

$$\dot{\varepsilon}_r^s = \frac{1}{\eta_r^s} \cdot \left[ \sigma^s - k_r^s \cdot \varepsilon_r^s \right] \Longrightarrow \varepsilon_r^s(t) = \frac{\sigma^s}{k_r^s} \cdot \left[ 1 - \exp\left(-\frac{t}{\tau_r^s}\right) \right] \qquad \text{éq 2.2.1-3}$$

 $\tau_r^s = \frac{\eta_r^s}{k_r^s}$  est le temps caractéristique associé à la déformation de fluage réversible. L'instant  $t_0$  est

donc défini par la relation [éq 2.2.1-4] :

$$\varepsilon_r^{fs}(t_0) = \frac{\sigma^s}{2 \cdot k_r^s} = \frac{\sigma^s}{k_r^s} \cdot \left[ 1 - \exp\left(-\frac{t_0}{\tau_r^s}\right) \right] \Longrightarrow t_0 = \ln(2) \cdot \tau_r^s \approx 0.69 \cdot \tau_r^s \quad \text{ éq 2.2.1-4}$$

Les déformations de fluage réversibles et irréversibles sont donc déterminées par :

$$\begin{cases} \varepsilon_{r}^{fs}(t) = \frac{\sigma^{s}}{k_{r}^{s}} \cdot \left[ 1 - \exp\left(-\frac{t}{\tau_{r}^{s}}\right) \right] \\ \varepsilon_{i}^{fs}(t) = 0 \end{cases}$$
 éq 2.2.1-5

Lors du calcul des déformations de fluage pour  $t > t_0$ , les nouvelles conditions initiales sont donc :

$$\begin{cases} \boldsymbol{\varepsilon}_{r}^{fs}(t_{0}) = \frac{\boldsymbol{\sigma}^{s}}{2 \cdot \boldsymbol{k}_{r}^{s}} \\ \boldsymbol{\varepsilon}_{i}^{fs}(t_{0}) = 0 \end{cases}$$
 éq 2.2.1-6

Fascicule v6.04 : Statique non linéaire des structures volumiques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 6/18 Clé : V6.04.163 Révision : 7921

#### 2.1.2.2 Cas du fluage à long terme

En exprimant les vitesses de déformations de fluage réversibles et irréversibles en fonction des déformations de fluage, on obtient alors la relation :

$$\begin{cases} \dot{\varepsilon}_{r}^{fs} = \left(-\frac{k_{r}^{s}}{\eta_{r}^{s}} - 4 \cdot \frac{k_{r}^{s}}{\eta_{i}^{s}}\right) \cdot \varepsilon_{r}^{fs} + \left(2 \cdot \frac{k_{i}^{s}}{\eta_{i}^{s}}\right) \cdot \varepsilon_{i}^{fs} + \left(\frac{1}{\eta_{r}^{s}} + \frac{2}{\eta_{i}^{s}}\right) \cdot \sigma^{s} \\ \dot{\varepsilon}_{i}^{fs} = \left(2 \cdot \frac{k_{r}^{s}}{\eta_{i}^{s}}\right) \cdot \varepsilon_{r}^{fs} + \left(-\frac{k_{i}}{\eta_{i}^{s}}\right) \cdot \varepsilon_{i}^{fs} + \left(-\frac{1}{\eta_{i}^{s}}\right) \cdot \sigma^{s} \end{cases}$$
 éq 2.2.2-1

Afin de simplifier les calculs, on définit les variables intermédiaires suivantes :

$$u_{rr} \coloneqq \frac{k_r}{\eta_r} = \frac{1}{\tau_r}, \ u_{ii} \coloneqq \frac{k_i}{\eta_i} = \frac{1}{\tau_i} \quad \text{et} \quad u_{ri} \coloneqq \frac{k_r}{\eta_i} \qquad \qquad \text{éq 2.2.2-2}$$

Le système d'équations [éq 2.2.2-1] peut se mettre alors sous la forme matricielle suivante :

$$\underline{\dot{\varepsilon}}^{fs} = \begin{bmatrix} \dot{\varepsilon}_r^{fs} \\ \dot{\varepsilon}_i^{fs} \end{bmatrix} = \begin{bmatrix} -u_{rr} - 4 \cdot u_{ri} & 2 \cdot u_{ii} \\ 2 \cdot u_{ri} & -u_{ii} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_r^{fs} \\ \varepsilon_r^{fs} \\ \vdots \end{bmatrix} + \sigma^s \cdot \frac{1}{k_r^s} \cdot \begin{bmatrix} u_{rr} + 2 \cdot u_{ri} \\ -u_{ri} \end{bmatrix}$$
 éq 2.2.2-3

C'est-à-dire :

$$\underline{\dot{\varepsilon}}^{fs} = \underline{\underline{A}} \cdot \underline{\underline{\varepsilon}}^{fs} + \sigma^s \cdot \underline{\underline{B}}$$
 éq 2.2.2-4

Supposons que la matrice  $\underline{\underline{A}}$  soit *diagonalisable* (cette propriété sera vérifiée par la suite) :  $\underline{\underline{A}} = \underline{\underline{P}} \cdot \underline{\underline{D}} \cdot \underline{\underline{P}}^{-1}$  où  $\underline{\underline{D}}$  désigne la matrice diagonale des valeurs propres de la matrice  $\underline{\underline{A}}$ ,  $\underline{\underline{P}}$ la matrice des vecteurs propres de la matrice  $\underline{\underline{A}}$  et  $\underline{\underline{P}}^{-1}$  la matrice inverse de la matrice  $\underline{\underline{P}}$ . En effectuant terme à terme le produit par la quantité  $\underline{\underline{P}}^{-1}$ , [éq 2.2.2-4] peut se mettre sous la forme :

$$\underline{\dot{\varepsilon}}^{fs,*} = \underline{\underline{D}} \cdot \underline{\varepsilon}^{fs,*} + \sigma^s \cdot \underline{\underline{B}}^* \text{ avec } \underline{\varepsilon}^{fs,*} = \underline{\underline{P}}^{-1} \cdot \underline{\varepsilon}^{fs} \text{ et } \underline{\underline{B}}^* = \underline{\underline{P}}^{-1} \cdot \underline{\underline{B}} \text{ (eq 2.2.2-5)}$$

Soit  $\lambda_1$  et  $\lambda_2$  les valeurs propres de la matrice  $\underline{\underline{A}}$  . On définit les quantités :

$$\underline{\varepsilon}^{fs,*} \coloneqq \begin{bmatrix} \varepsilon_1^* \\ \varepsilon_2^* \end{bmatrix} \text{ et } \underline{B}^* \coloneqq \begin{bmatrix} b_1^* \\ b_2^* \end{bmatrix}$$

$$\begin{cases} \dot{\varepsilon}_1^*(t) = \lambda_1 \cdot \varepsilon_1^*(t) + \sigma^s \cdot b_1^* \\ \dot{\varepsilon}_2^*(t) = \lambda_2 \cdot \varepsilon_2^*(t) + \sigma^s \cdot b_2^* \end{cases} \quad \text{éq 2.2.2-6}$$

[éq 2.2.2-5] s'écrit alors :

Manuel de validation

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 7/18 Clé : V6.04.163 Révision : 7921

Système dont la solution s'écrit :

 $\begin{cases} \varepsilon_1^*(t) = -\frac{\sigma^s \cdot b_1^*}{\lambda_1} + \mu_1 \cdot \exp(\lambda_1 \cdot t) \\ \varepsilon_2^*(t) = -\frac{\sigma^s \cdot b_2^*}{\lambda_2} + \mu_2 \cdot \exp(\lambda_2 \cdot t) \end{cases} \begin{pmatrix} \lambda_1 \neq 0 \\ \lambda_2 \neq 0 \end{pmatrix} \quad \text{éq 2.2.2-7}$ 

On peut alors revenir à l'espace initial, par le biais de la matrice de passage ; les déformations de fluage réversibles et irréversibles sont des combinaisons linéaires de  $\varepsilon_1^*$  et  $\varepsilon_2^*$ . Les valeurs propres de la matrice  $\underline{A}$ ,  $\lambda_1$  et  $\lambda_2$  sont obtenues en résolvant :

$$\det(\underline{\underline{A}} - \lambda_i \cdot \underline{\underline{1}}) = 0$$
  
$$\Rightarrow \begin{vmatrix} -u_{rr} - 4 \cdot u_{ri} - \lambda_i & 2 \cdot u_{ii} \\ 2 \cdot u_{ri} & -u_{ii} - \lambda_i \end{vmatrix} = 0 \Rightarrow \lambda_i^2 + (u_{rr} + 4 \cdot u_{ri} + u_{ii}) \cdot \lambda_i + u_{rr} \cdot u_{ii} = 0$$
<sup>éq 2.2.2-8</sup>

En remarquant que  $u_{rr}$ ,  $u_{ri}$  et  $u_{ii}$  sont strictement positifs, le discriminant est donc toujours strictement positif. Les valeurs propres sont donc réelles et distinctes, la matrice  $\underline{A}$  est donc *diagonalisable*. Par ailleurs, aucune des deux valeurs propres n'est égale à zéro  $(\lambda_1 \cdot \lambda_2 = u_{rr} \cdot u_{ii} \neq 0)$ . Les deux valeurs propres sont définies par :

$$\begin{cases} \lambda_1 = \frac{-(u_{rr} + 4 \cdot u_{ri} + u_{ii}) - \sqrt{\Delta}}{2} \\ \lambda_2 = \frac{-(u_{rr} + 4 \cdot u_{ri} + u_{ii}) + \sqrt{\Delta}}{2} \end{cases}$$
éq 2.2.2-9

On peut montrer que les deux valeurs propres sont effectivement négatives. Montrons que la deuxième valeur propre est négative. La déformation de fluage sphérique est donc asymptotique, hypothèse émise dans le modèle de fluage propre sphérique [bib1]. Déterminons maintenant une base des vecteurs propres  $(\underline{X}_1, \underline{X}_2)$  associés aux valeurs propres  $\lambda_1$  et  $\lambda_2$ . Elle se détermine en résolvant l'équation  $(\underline{\underline{A}} - \lambda_i \cdot \underline{\underline{1}}) \cdot \underline{X}_i = \underline{0}$ .

Une base particulière de vecteurs propres s'écrit :

$$\underline{X}_1 = \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \text{ et } \underline{X}_2 = \begin{bmatrix} 1 \\ x_2 \end{bmatrix} \text{ avec } x_1 = \frac{\lambda_1 + u_{ii}}{2 \cdot u_{ri}} \text{ et } x_2 = \frac{2 \cdot u_{ri}}{\lambda_2 + u_{ii}} \text{ eq 2.2.2-10}$$

Manuel de validation

Fascicule v6.04 : Statique non linéaire des structures volumiques

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 8/18 Clé : V6.04.163 Révision : 7921

Version

default

Après avoir vérifié que  $\underline{\underline{P}}$  peut effectivement être inversée, on en déduit la solution dans l'espace physique :

avec

$$b_1^* = \frac{1}{x_1 \cdot x_2 - 1} \cdot [x_2 \cdot (u_{rr} + 2 \cdot u_{ri}) + u_{ri}]$$
  
$$b_2^* = \frac{1}{x_1 \cdot x_2 - 1} \cdot [-(u_{rr} + 2 \cdot u_{ri}) - x_1 \cdot u_{ri}]$$

Enfin,  $\mu_1$  et  $\mu_2$  sont définis par les relations :

$$\begin{aligned} \mu_1 &= -\frac{1}{(x_1 \cdot x_2 - 1) \cdot \exp[(\lambda_1 + \lambda_2) \cdot t_0]} \cdot \left[ \frac{1}{2 \cdot k_r} \cdot x_2 \cdot \exp(\lambda_2 \cdot t_0) - \frac{1}{k_i} \cdot \exp(\lambda_2 \cdot t_0) \right] \\ \mu_2 &= -\frac{1}{(x_1 \cdot x_2 - 1) \cdot \exp[(\lambda_1 + \lambda_2) \cdot t_0]} \cdot \left[ -\frac{1}{2 \cdot k_r} \cdot \exp(\lambda_1 \cdot t_0) + \frac{1}{k_i} \cdot x_1 \cdot \exp(\lambda_1 \cdot t_0) \right] \end{aligned}$$
éq 2.2.2-12

#### 2.1.3 Résolution des équations constitutives du fluage déviatorique

Les contraintes déviatoriques comportent une partie réversible et une partie irréversible (cf. [R7.01.06]) :

$$\underbrace{\boldsymbol{\varepsilon}}_{i=1}^{fd} = \underbrace{\boldsymbol{\varepsilon}}_{i=r}^{fd} + \underbrace{\boldsymbol{\varepsilon}}_{i=i}^{fd}$$
  
déformation contribution contribution éq 2.3-1  
déviatorique absobée libre

La *j<sup>ème</sup>* composante principale de la déformation déviatorique totale est régie par les équations [éq 2.3-2] et [éq 2.3-3] :

$$\eta_r^d \dot{\varepsilon}_r^{d,j} + k_r^d \varepsilon_r^{d,j} = h \cdot \sigma^{d,j}$$
 éq 2.3-2

où  $k_r^d$  désigne la rigidité associée à la capacité de l'eau adsorbée à transmettre des charges (*load bearing water*);

et  $\eta_r^d$  la viscosité associée à l'eau adsorbée par les feuillets d'hydrates.

$$\eta_i^d \dot{\varepsilon}_i^{d,j} = h \cdot \sigma^{d,j} \qquad \qquad \text{éq 2.3-3}$$

| Code_Aster                                                   | Version<br>default              |
|--------------------------------------------------------------|---------------------------------|
| Titre : SSNV163 - Calcul de fluage propre avec les modèles[] | Date : 14/12/2011 Page : 9/18   |
| Responsable : Marina BOTTONI                                 | Clé : V6.04.163 Révision : 7921 |

où  $\eta_i^d$  désigne la viscosité de l'eau libre. Le système d'équations [éq 2.3-2] et [éq 2.3-3] est plus simple à résoudre que celui régissant le comportement sphérique du fait qu'il est découplé. On suppose toujours que l'humidité reste égale à 1 durant tout le chargement. L'équation [éq 2.3-2] correspond au modèle visco-élastique de Kelvin dont le réponse à un échelon de contrainte est de type exponentiel. Quant à l'équation [éq 2.3-3], la réponse en déformation est linéaire avec la temps. La déformation de fluage totale s'écrit donc comme la somme de la contribution d'une chaîne de Kelvin et de la contribution d'un amortisseur et série :

$$\varepsilon^{d,j}(t) = \left[\frac{t}{\eta_i^d} + \frac{1}{k_r^d} \left(1 - e^{-\frac{k_r^d}{\eta_r^d}t}\right)\right] \cdot \sigma^{d,j} H(t) \qquad \text{éq 2.3-4}$$

#### 2.1.4 Récapitulatif de la solution analytique

Pour un chargement uniaxial les solutions analytiques des deux composantes de déformation sont connues. La contribution de la partie déviatorique s'écrit :

$$\varepsilon^{fd}(t) = \frac{2}{3}\sigma_0 \cdot \left\{ \frac{t}{\eta_i^d} + \frac{1}{k_r^d} \left[ 1 - \exp\left(-\frac{k_r^d t}{\eta_r^d}\right) \right] \right\}$$
 éq 2.4-1

Quant à la contribution de la partie sphérique, la solution est définie sur deux intervalles :

$$\varepsilon^{fs}(t) = \begin{cases} \frac{\sigma_0}{3k_r^s} \cdot \left[ 1 - \exp\left(-\frac{k_r^s t}{\eta_r^s}\right) \right] & t \le \frac{\eta_r^s}{k_r^s} \ln 2 \\ \frac{\sigma_0}{3} \left[ \left(\frac{1}{k_r^s} + \frac{1}{k_i^s}\right) + \mu_1(1+x_1) \exp(\lambda_1 t) + \mu_2(1+x_2) \exp(\lambda_2 t) \right] & t > \frac{\eta_r^s}{k_r^s} \ln 2 \end{cases}$$
 éq 2.4-2

La déformation axiale est une fonction linéaire des deux contributions précédentes :

$$\varepsilon_{zz} = \varepsilon^{fs} (\sigma_0/3) + \varepsilon^{fd} (2\sigma_0/3)$$
 éq 2.4-3

#### 2.2 Solutions obtenues pour le modèle BETON BURGER FP

La solution analytique n'a pas été développée pour ce chargement de fluage uniaxial. La solution de référence est obtenue numériquement en utilisant un script python (accessible sous le répertoire astest : SSNV163D.44). Le schéma d'intégration utilisé est explicite et sensible à la discrétisation temporelle employée.

#### 2.3 Grandeurs et résultats de référence

L'essai est homogène. On teste la déformation en un nœud quelconque.

#### 2.4 Incertitudes sur la solution

Résultat analytique exact pour BETON\_UMLV\_FP. Résultat dépendant de la discrétisation temporelle employée pour BETON BURGER FP.

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 10/18 Clé : V6.04.163 Révision : 7921

### 2.5 Références bibliographiques

- 1.BENBOUDJEMA, F. : Modélisation des déformations différées du béton sous sollicitations biaxiales. Application aux bâtiments réacteurs de centrales nucléaires, Mémoire de D.E.A. Matériaux Avancés – Ingénierie des Structures et des Enveloppes, 38 p. (+ annexes) (1999).
- 2.BENBOUDJEMA, F., MEFTAH, F., HEINFLING, G., LE PAPE, Y. : Étude numérique et analytique de la partie sphérique du modèle de fluage propre UMLV pour le béton, note technique HT-25/02/040/A, 56 p (2002).
- 3.LE PAPE, Y. : Relation de comportement UMLV pour le fluage propre du béton, Documentation de Référence de *Code\_Aster* [R7.01.06], 16 p (2002).
- 4.FOUCAULT, A.: Relation de comportement BETON\_BURGER\_FP pour le fluage propre du béton, Documentation de Référence de *Code\_Aster* [R7.01.35] (2011).

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Version

### 3 Modélisation A

### 3.1 Caractéristiques de la modélisation

Modélisation 3D



### 3.2 Caractéristiques du maillage

Nombre de nœuds : 8 Nombre de mailles : 1 de type HEXA 8 6 de type QUAD 4

On définit les mailles suivantes :

| $S_{ARR}$          | NO3 | NO7 | NO8         | NO4        |
|--------------------|-----|-----|-------------|------------|
| S <sub>AVT</sub>   | NOI | NO2 | NO6         | NO5        |
| $S_{DRT}$          | NOI | NO5 | NO8         | <i>NO4</i> |
| $S_{GCH}$          | NO3 | NO2 | NO6         | NO7        |
| $S_{\rm INF}$      | NOI | NO2 | NO3         | <i>NO4</i> |
| $S_{\mathrm{SUP}}$ | NO5 | NO6 | <i>NO</i> 7 | NO8        |

Les conditions aux limites en déplacement imposées sont :

Sur les nœuds NO1, NO2, NO3 et NO4: DZ=0Sur les nœuds NO3, NO7, NO8 et NO4: DY=0Sur les nœuds NO2, NO6, NO7 et NO8: DX=0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/4 appliquée sur les quatre nœuds de  $S_{\rm SUP}$  .

```
Manuel de validation
```

*Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI*  Date : 14/12/2011 Page : 12/18 Clé : V6.04.163 Révision : 7921

### 3.3 Grandeurs testées et résultats

La composante  $\varepsilon_{zz}$  au nœud NO6 a été testée.

| Instant    | Référence      | Aster          | % différence |
|------------|----------------|----------------|--------------|
| 0.         | 0.             | 0.             | -            |
| 1.0000E+00 | -3.225814D-05  | - 3.225810D-05 | - 1.37E-04   |
| 9.7041E+04 | - 3.867143D-05 | - 3.867140D-05 | - 8.95E-05   |
| 1.8389E+06 | -6.088552D-05  | -6.088554D-05  | 3.25E-05     |
| 8.6400E+06 | - 1.100478D-04 | -1.100473D-04  | -7.27E-06    |

Manuel de validation

Fascicule v6.04 : Statique non linéaire des structures volumiques

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI

Révision : 7921

Clé : V6.04.163

### 4 Modélisation B

### 4.1 Caractéristiques de la modélisation

Modélisation 2D axisymétrique.



### 4.2 Caractéristiques du maillage

Nombre de nœuds : 4 Nombre de mailles : 1 de type QUAD 4 4 de type SEG2

On définit les mailles suivantes :

| $L_{INF}$        | NO1 | NO2 |
|------------------|-----|-----|
| $L_{DRT}$        | NO2 | NO4 |
| $L_{\text{SUP}}$ | NO4 | NO3 |
| $L_{GCH}$        | NO3 | NOI |

Les conditions aux limites en déplacement imposées sont :

Sur  $L_{GCH}$  : DY = 0Sur  $L_{INF}$  : DX = 0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/2 appliquée sur les deux nœuds de  $L_{\rm SUP}$  .

#### 4.3 Grandeurs testées et résultats

La composante  $\varepsilon_{vv}$  au nœud *NO3* a été testée

| Instant    | Référence      | Aster          | % différence |
|------------|----------------|----------------|--------------|
| 0.         | 0.             | 0.             | -            |
| 1.0000E+00 | -3.225814D-05  | - 3.225810D-05 | - 1.37E-04   |
| 9.7041E+04 | - 3.867143D-05 | - 3.867140D-05 | - 8.95E-05   |
| 1.8389E+06 | -6.088552D-05  | -6.088554D-05  | 3.25E-05     |
| 8.6400E+06 | - 1.100478D-04 | -1.100473D-04  | -7.27E-06    |

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Version

### 5 Modélisation C

### 5.1 Caractéristiques de la modélisation

Modélisation en Contraintes Planes.



### 5.2 Caractéristiques du maillage

Nombre de nœuds : 4 Nombre de mailles : 1 de type QUAD 4 4 de type SEG2

On définit les mailles suivantes :

| $L_{INF}$     | NOI | NO2 |
|---------------|-----|-----|
| $L_{DRT}$     | NO2 | NO4 |
| $L_{\rm SUP}$ | NO4 | NO3 |
| $L_{GCH}$     | NO3 | NOI |

Les conditions aux limites en déplacement imposées sont :

Sur  $L_{GCH}$  : DY = 0Sur  $L_{INF}$  : DX = 0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/2 appliquée sur les deux nœuds de  $L_{\rm SUP}$  .

### 5.3 Grandeurs testées et résultats

La composante  $\varepsilon_{vv}$  au nœud NO3 a été testée

| Instant    | Référence      | Aster          | % différence |
|------------|----------------|----------------|--------------|
| 0.         | 0.             | 0.             | -            |
| 1.0000E+00 | -3.225814D-05  | - 3.225810D-05 | - 1.40E-04   |
| 9.7041E+04 | - 3.867143D-05 | - 3.867140D-05 | - 9.225E-05  |
| 1.8389E+06 | -6.088552D-05  | -6.088554D-05  | 3.08E-05     |
| 8.6400E+06 | - 1.100478D-04 | -1.100478D-04  | -8.22E-06    |

Fascicule v6.04 : Statique non linéaire des structures volumiques

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Version default Date : 14/12/2011 Page : 15/18

Révision : 7921

Clé : V6.04.163

### 6 Modélisation D

### 6.1 Caractéristiques de la modélisation

Modélisation 3D



### 6.2 Caractéristiques du maillage

Nombre de nœuds : 8 Nombre de mailles : 1 de type HEXA 8 6 de type QUAD 4

On définit les mailles suivantes :

| NO3 | NO7                             | NO8                                                                                                                                                                                                                                                       | NO4                                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOI | NO2                             | NO6                                                                                                                                                                                                                                                       | NO5                                                                                                                                                                                                                                                                                                                                         |
| NOI | NO5                             | NO8                                                                                                                                                                                                                                                       | NO4                                                                                                                                                                                                                                                                                                                                         |
| NO3 | NO2                             | NO6                                                                                                                                                                                                                                                       | NO7                                                                                                                                                                                                                                                                                                                                         |
| NOI | NO2                             | NO3                                                                                                                                                                                                                                                       | NO4                                                                                                                                                                                                                                                                                                                                         |
| NO5 | NO6                             | <i>NO</i> 7                                                                                                                                                                                                                                               | NO8                                                                                                                                                                                                                                                                                                                                         |
|     | NO3<br>NO1<br>NO3<br>NO1<br>NO5 | NO3         NO7           NO1         NO2           NO1         NO5           NO3         NO2           NO1         NO2           NO1         NO2           NO1         NO2           NO1         NO2           NO1         NO2           NO5         NO6 | NO3         NO7         NO8           NO1         NO2         NO6           NO1         NO5         NO8           NO3         NO2         NO6           NO1         NO2         NO6           NO1         NO2         NO6           NO1         NO2         NO6           NO1         NO2         NO3           NO5         NO6         NO7 |

Les conditions aux limites en déplacement imposées sont :

•Sur les nœuds NO1, NO2, NO3 et NO4: DZ=0•Sur les nœuds NO3, NO7, NO8 et NO4: DY=0•Sur les nœuds NO2, NO6, NO7 et NO8: DX=0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/4 appliquée sur les quatre nœuds de  $S_{\rm SUP}$  .

### 6.3 Grandeurs testées et résultats

La composante  $\varepsilon_{zz}$  au nœud NO6 a été testée.

| Instant    | Type de Référence | Référence     | % Tolérance |
|------------|-------------------|---------------|-------------|
| 0.         | SOURCE_EXTERNE    | 0.            | -           |
| 1.0000E+00 | SOURCE_EXTERNE    | -3.22581D-05  | 0.5         |
| 9.7041E+04 | SOURCE_EXTERNE    | - 3.89947D-05 | 0.5         |
| 1.8389E+06 | SOURCE_EXTERNE    | -6.55895D-05  | 0.5         |
| 8.6400E+06 | SOURCE EXTERNE    | - 1.32437D-04 | 0.5         |

Manuel de validation

Fascicule v6.04 : Statique non linéaire des structures volumiques

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI

Date : 14/12/2011 Page : 16/18 Clé : V6.04.163 Révision : 7921

### 7 Modélisation B

### 7.1 Caractéristiques de la modélisation

Modélisation  $2D\,$   $\mbox{AXIS}.$ 



### 7.2 Caractéristiques du maillage

Nombre de nœuds : 4 Nombre de mailles : 1 de type QUAD 4 4 de type SEG2

On définit les mailles suivantes :

| L <sub>INF</sub> | NO1 | NO2 |
|------------------|-----|-----|
| L <sub>DRT</sub> | NO2 | NO4 |
| $L_{\rm SUP}$    | NO4 | NO3 |
| $L_{GCH}$        | NO3 | NOI |

Les conditions aux limites en déplacement imposées sont :

Sur  $L_{GCH}$  : DY = 0Sur  $L_{INF}$  : DX = 0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/2 appliquée sur les deux nœuds de  $L_{\rm SUP}$ .

#### 7.3 Grandeurs testées et résultats

La composante  $\varepsilon_{_{\mathcal{VV}}}$  au nœud NO3 a été testée

| Instant    | Type de Référence | Référence     | % Tolérance |
|------------|-------------------|---------------|-------------|
| 0.         | SOURCE_EXTERNE    | 0.            | -           |
| 1.0000E+00 | SOURCE_EXTERNE    | -3.22581D-05  | 0.5         |
| 9.7041E+04 | SOURCE_EXTERNE    | - 3.89947D-05 | 0.5         |
| 1.8389E+06 | SOURCE_EXTERNE    | -6.55895D-05  | 0.5         |
| 8.6400E+06 | SOURCE EXTERNE    | - 1.32437D-04 | 0.5         |

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 17/18 Clé : V6.04.163 Révision : 7921

### 8 Modélisation C

### 8.1 Caractéristiques de la modélisation

Modélisation en Contraintes Planes.



### 8.2 Caractéristiques du maillage

Nombre de nœuds : 4 Nombre de mailles : 1 de type QUAD 4 4 de type SEG2

On définit les mailles suivantes :

| $L_{INF}$        | NOI | NO2 |
|------------------|-----|-----|
| $L_{DRT}$        | NO2 | NO4 |
| $L_{\text{SUP}}$ | NO4 | NO3 |
| $L_{GCH}$        | NO3 | NOI |

Les conditions aux limites en déplacement imposées sont :

Sur  $L_{GCH}$  : DY = 0Sur  $L_{INF}$  : DX = 0

Le chargement est constitué du même champ de séchage et de la même force nodale 1/2 appliquée sur les deux nœuds de  $L_{\rm SUP}$  .

#### 8.3 Grandeurs testées et résultats

La composante  $\varepsilon_{yy}$  au nœud *NO3* a été testée

| Instant    | Type de Référence | Référence     | % Tolérance |
|------------|-------------------|---------------|-------------|
| 0.         | SOURCE_EXTERNE    | 0.            | -           |
| 1.0000E+00 | SOURCE_EXTERNE    | -3.22581D-05  | 0.5         |
| 9.7041E+04 | SOURCE_EXTERNE    | - 3.89947D-05 | 0.5         |
| 1.8389E+06 | SOURCE_EXTERNE    | -6.55895D-05  | 0.5         |
| 8.6400E+06 | SOURCE EXTERNE    | - 1.32437D-04 | 0.5         |

Manuel de validation

Fascicule v6.04 : Statique non linéaire des structures volumiques

Titre : SSNV163 - Calcul de fluage propre avec les modèles[...] Responsable : Marina BOTTONI Date : 14/12/2011 Page : 18/18 Clé : V6.04.163 Révision : 7921

Version

default

### 9 Synthèse des résultats

Les valeurs obtenues avec *Code\_Aster* sont en accord avec les valeurs de référence. Ce même test a été tourné avec Castem au Laboratoire de Mécanique à L'Université de Marne la Vallée, les mêmes résultats ont été obtenus pour le modèle BETON\_UMLV\_FP.

Fascicule v6.04 : Statique non linéaire des structures volumiques