Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Date: 15/05/2013 Page: 1/9 Responsable: Sébastien FAYOLLE Clé: V5.06.106 Révision: 11000

SDNS106 – Réponse transitoire d'une dalle en béton armé: modèles GLRC DAMAGE et GLRC DM

Résumé:

Ce test valide les modèles globaux GLRC DAMAGE [R7.01.31] et GLRC DM [R7,01.32] appliqués à la dynamique explicite (DYNA NON LINE (SCHEMA TEMPS=DIFF CENT)). Il s'agit d'une plaque trapézoïdale en béton armé, appuyée sur deux côtés opposés et sollicitée en flexion par une pression.

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Date: 15/05/2013 Page: 2/9 Responsable: Sébastien FAYOLLE Clé: V5.06.106 Révision: 11000

Problème de référence

1.1 Géométrie

La géométrie utilisée dans ce cas test est une plaque en béton armée d'épaisseur $e=0.1\,\mathrm{m}$ et de forme trapézoïdale.

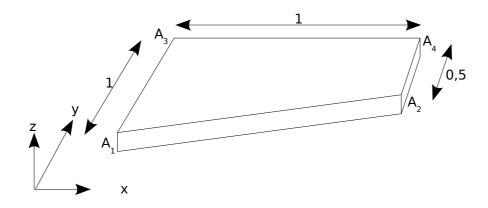


Figure 1.1-a: Géométrie étudiée

Les caractéristiques de la section de béton armée sont :

Nappe supérieure : section par mètre linéaire suivant x et $y = 5.65 \cdot 10^{-4} \, m^2 / ml$; excentrement par rapport au feuillet moyen suivant x et y: +0.0475 m (soit 95% de

Nappe inférieure : section par mètre linéaire suivant x et $y = 5.65 \cdot 10^{-4} \, m^2 / ml$; excentrement par rapport au feuillet moyen suivant x et y: -0.0475 m (soit 95% de l'épaisseur),

Câbles de précontrainte : section par mètre linéaire suivant $x = 4.56 \cdot 10^{-3} \, m^2 / ml$ et $v=1.32\,10^{-2}\,m^2/ml$; pas d'excentrement par rapport au feuillet moyen; précontrainte suivant x et y = -3MN,

Liner : l'épaisseur du liner est de 6 mm et est positionné sur la face inférieure.

Figure 1.1-b: Section de la plaque en béton armé

Date: 15/05/2013 Page: 3/9

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

1.2 Propriétés des matériaux

Les caractéristiques des différents matériaux pour la modélisation <code>GLRC_DAMAGE</code> sont résumées dans le tableau qui suit.

Matériau		Module d'Young MPa	Coefficie nt de Poisson	Densité kg/m^3	Pente d'écrouissage	Limite élastique en traction <i>MPa</i>	Limite élastique en compressio n <i>MPa</i>
Béton		30000.	0.2	2500	0	5	-35
Acier armatures	des	200000	-	-	0	3000	-3000
Acier du liner e câbles précontrainte	et des de	200000	-	-	0	500	-500

Pour compléter la loi de comportement GLRC_DAMAGE, il est nécessaire de définir les paramètres globalisés de loi homogénéisée.

Paramètres	Valeurs
Gamma	0
QP1	0.15
QP2	0.15
C_N	87.3 MPa
$C_{\scriptscriptstyle M}$	14.8 <i>MPa</i>

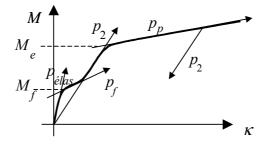


Figure 1.2-a: Courbe moment - courbure du comportement d'une plaque en béton armé en flexion.

Les caractéristiques matériaux pour la modélisation GLRC DM sont résumées dans le tableau qui suit.

Parametres	Valeurs
$E_{\acute{e}q}^m$	30000 <i>MPa</i>
V_m	0.22
$E^f_{\acute{e}q}$	73000 <i>MPa</i>
$v_{\!f}$	0.24
γ_{mt}	0.02
γ_f	0.05
$\overline{}$ N_D	470000 N /m
M_{D}	16000 <i>N</i>

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Date: 15/05/2013 Page: 4/9 Responsable: Sébastien FAYOLLE Clé: V5.06.106 Révision: 11000

1.3 Conditions aux limites et chargements

Sur le coin AI de la plaque, on encastre les déplacements $u_x = u_y = u_z = 0$, aussi bien que les rotations $\theta_x = \theta_y = \theta_z = 0$. Les déplacements sont bloqués suivant x et z sur les côtés A1A3 et A2A4. Une pression est appliquée sur l'ensemble de la dalle dans la direction (0.0,0.0,1,0) et vaut $F_0 = 20.10^7 N$ pour la modélisation A. Pour les modélisations B et C, on applique une force nodale sur l'ensemble de la dalle $1500\,N$. Cette force est appliquée de manière progressive en suivant la fonction multiplicatrice représentée sur la figure qui suit.

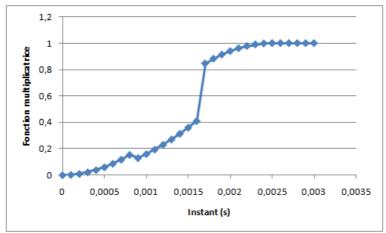


Figure 1.3-a: Fonction multiplicatrice du chargement pour les modélisations B et C

Conditions initiales 1.4

À l'état initial, les déplacements et les vitesses valent zéro partout.

Titre: SDNS106 - Réponse transitoire d'une dalle en béton[...]

Date: 15/05/2013 Page: 5/9

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

2 Solution de référence

2.1 Méthode de calcul

Les valeurs de référence sont obtenus par comparaisons avec <code>EUROPLEXUS</code> pour la modélisation A. Pour les modélisations B et C, les valeurs de référence sont de la non régressions.

2.2 Grandeurs et résultats de référence

Les résultats de référence pour la modélisation A sont récapitulés dans le tableau qui suit. Les données sont obtenues au point P_{04} (cf. figure 3.1-a).

Grandeurs	Référence
Déplacement suivant z à $t=210^{-5}s$	$-1,7491310^{-4}m$
Accélération suivant $z \ a \ t = 210^{-5} \ s$	$-7,9996810^5m.s^{-2}$
Déplacement suivant z à $t=110^{-3}s$	$-4,493310^{-1} m$
Vitesse suivant $z \ a \ t = 110^{-3} s$	$-8,2476110^2m.s^{-1}$
Energie élastique au noeud 2 de la maille 1 à $t=210^{-6}s$	$1,4606710^{-1}J$

2.3 Incertitudes sur la solution

Comparaisons avec EUROPLEXUS pour les réponses temporelles en déplacement, les réactions, et l'énergie cinétique, pour un chargement sinusoïdal

Date: 15/05/2013 Page: 6/9

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

3 Modélisation A

3.1 Caractéristiques de la modélisation

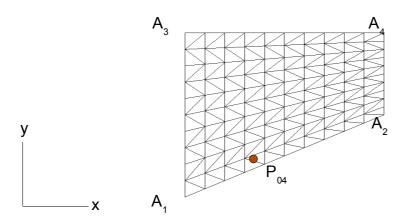


Figure 3.1-a: Maillage de la modélisation A

Modélisation : DKTG

Conditions aux limites :

Encastrement en A1,

Appui simple A3A1 et A2A4 , soit DZ=0 et DX=0 .

Intégration temporelle :

Schéma: DIFF_CENT, formulation: ACCELERATION,

Pas de temps : $2.10^{-6} s$.

3.2 Caractéristiques du maillage

Nombre de nœuds : 121, Nombre de mailles : éléments TRI3 : 200, éléments SEG2 : 40.

3.3 Grandeurs testées et résultats

On teste les déplacements, vitesse et accélération du point P04 à différents instants. On teste aussi l'énergie élastique en deux points de la structure.

Identification	Type de référence	Valeur de référence	Tolérance
Déplacement suivant z à $t=210^{-5}s$	'AUTRE_ASTER'	$-1,7491310^{-4}m$	0,15
Accélération suivant z à $t=210^{-5}\mathrm{s}$	'AUTRE_ASTER'	$-7,9996810^5m.s^{-2}$	10^{-4}
Déplacement suivant z à $t=110^{-3}s$	'AUTRE_ASTER'	$-4,493310^{-1}m$	0,03
Vitesse suivant z à $t=110^{-3}s$	'AUTRE_ASTER'	$-8,2476110^2m.s^{-1}$	0,1
Energie élastique au noeud 2 de la maille 1 à $t=210^{-6}\mathrm{s}$	'AUTRE_ASTER'	$1,4606710^{-1}J$	10^{-5}

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...] Date : 15/05/2013 Page : 7/9

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

4 Modélisation B

4.1 Caractéristiques de la modélisation

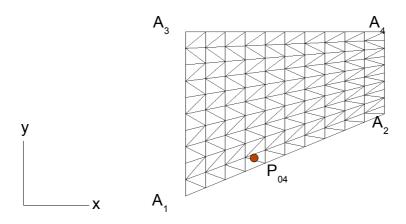


Figure 4.1-a : Maillage de la modélisation A

Modélisation : DKTG

Conditions aux limites :

Encastrement en A1,

Appui simple A3A1 et A2A4 , soit DZ=0 et DX=0 .

Intégration temporelle :

Schéma: NEWMARK, formulation: DEPLACEMENT,

Pas de temps : $1.10^{-4} s$.

4.2 Caractéristiques du maillage

Nombre de nœuds : 121, Nombre de mailles : éléments $\mathtt{QUAD4}$: 100, éléments $\mathtt{SEG2}$: 40.

4.3 Grandeurs testées et résultats

On teste les déplacements, vitesse et accélération du point P04 à différents instants.

Identification	Type de référence	Valeur de référence	Tolérance
Déplacement suivant z à $t=2.510^{-3}s$	NON REGRESSION	$-4.0923810^{-4} m$	10^{-5}
Vitesse suivant z à $t=2.510^{-3}$ s	NON REGRESSION	$-0.4984907 m.s^{-1}$	10^{-5}
Accélération suivant z à $t=2.510^{-3}s$	NON REGRESSION	$-56,1819 m.s^{-2}$	10^{-5}
Déplacement suivant z à $t=510^{-3}s$	NON REGRESSION	-1.8987610^{-4} m	10^{-5}
Vitesse suivant z à $t=510^{-3}s$	NON REGRESSION	$0.3652467 m.s^{-1}$	10^{-5}
Accélération suivant z à $t=510^{-3}s$	NON REGRESSION	$-797.416 m.s^{-2}$	10^{-5}

Date: 15/05/2013 Page: 8/9

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

5 Modélisation C

5.1 Caractéristiques de la modélisation

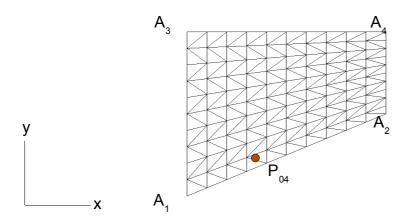


Figure 5.1-a: Maillage de la modélisation A

Modélisation : DKTG

Conditions aux limites :

Encastrement en A1,

Appui simple A3A1 et A2A4, soit DZ=0 et DX=0.

Intégration temporelle :

Schéma: NEWMARK, formulation: DEPLACEMENT,

Pas de temps : $1.10^{-4}s$.

5.2 Caractéristiques du maillage

Nombre de nœuds : 121, Nombre de mailles : éléments TRI3 : 200, éléments SEG2 : 40.

5.3 Grandeurs testées et résultats

On teste les déplacements, vitesse et accélération du point $\it P04$ à différents instants. On teste aussi l'énergie élastique en deux points de la structure.

Identification	Type de référence	Valeur de référence	Tolérance
Déplacement suivant z à $t=2.510^{-3}s$	NON REGRESSION	$-3.7103110^{-4}m$	10^{-5}
Vitesse suivant z à $t=2.5 \cdot 10^{-3} s$	NON REGRESSION	$-0.4496707 m.s^{-1}$	10^{-5}
Accélération suivant z à $t=2.5 10^{-3} s$	NON REGRESSION	$-61,3004 m.s^{-2}$	10^{-5}
Déplacement suivant z à $t=510^{-3}s$	NON REGRESSION	$-1.5682710^{-4}m$	10^{-5}
Vitesse suivant z à $t=510^{-3}s$	NON REGRESSION	$-0.4552156 m.s^{-1}$	10^{-5}
Accélération suivant z à $t=510^{-3}s$	NON REGRESSION	$73.0819 m.s^{-2}$	10^{-5}

Version default

Date: 15/05/2013 Page: 9/9

Titre : SDNS106 - Réponse transitoire d'une dalle en béton[...]

Responsable : Sébastien FAYOLLE Clé : V5.06.106 Révision : 11000

6 Synthèse des résultats

Les résultats obtenus avec *Code_Aster* sont proches de ceux obtenus avec EUROPLEXUS. Cette modélisation valide donc l'utilisation de GLRC_DAMAGE avec *Code_Aster*.