

Version

Macro-commande CALC ESSAI

1 But

Lancement de la macro-commande CALC_ESSAI, qui permet, au travers d'une interface graphique, de lancer des calculs d'identification et d'expansion sur des structures filaires filaires et de lancer des calculs de modification structurale :

- expansion de données expérimentales sur base de déformées numériques, en utilisant la macro-commande MACRO_EXPANS (qui effectue les opérations élémentaires EXTR_MODE, PROJ MESU MODAL, REST GENE PHYS et PROJ CHAMP),
- identification d'efforts sur une structure quelconque, avec décomposition du mouvement sur base modale et localisation *a priori* des chargements,
- modification structurale : évaluer l'effet d'une modification connaissant le modèle modal expérimental de la structure initiale et le modèle aux éléments finis de la modification apportée,
- traitement du signal : piloter l'opérateur CALC_SPEC pour calculer des inter-spectres, autospectres et FRF à partir de signaux temporels,
- visualisation des déformées modales, génération de FRF « coup de marteau », visualisation de spectres et de matrices de MAC (via Salomé ou GMSH/Xmgrace/Tk).

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON
 default

 Date : 05/11/2012
 Page : 2/18

 Clé : U4.90.01
 Révision : 10031

Version

Table des matières

<u>1 But</u>	1
2 Syntaxe	<u>3</u>
3 Introduction	5
3.1Objectifs de la commande	5
3.2Paramètres de visualisation	
3.3Concepts sortants	<u>5</u>
4 Utilisation de l'expansion modale (EXPANSION)	5
4.1Mots-clés en mode non-interactif	5
4.1.1 Mots-clés MESURE et NUME_MODE_MESURE	6
4.1.2 Mot-clé CALCUL	6
4.1.3 Mots-clés RESOLUTION et EPS	6
4.2Utilisation en interactif	<u>6</u>
4.2.1 Principes théoriques	7
4.2.2 Exécution du calcul	7
4.2.3 Visualisation	7
5 Modification structurale (MODIFSTRUCT)	8
5.1Mots-clés en mode non-interactif	8
5.1.1 Mot clé MESURE	8
5.1.2 Mot clé MODELE_SUP	8
5.1.3 Mot clé MODELE_MODIF	8
5.1.4 Mot clé MATR_RIGI	8
5.1.5 Mot clé RESOLUTION	8
5.1.6 Mot clé NUME_MODE_MESU	8
5.1.7 Mot clé NUME_MODE_CALCUL	8
5.1.8 Mot clé GROUP_NO_CAPTEURS	<u>9</u>
5.1.9 Mot clé GROUP_NO_EXTERIEUR	<u>9</u>
5.2Utilisation en mode interactif	9
5.3Les concepts produits	<u>10</u>
6 Identification d'efforts localisés a priori (IDENTIFICATION)	<u>11</u>
6.1Mots-clés en mode non-interactif	11
6.1.1 Mot clé INTE_SPEC	11
6.1.2 Mots clés OBSERVABILITE et COMMANDABILITE	11
6.1.3 Mots-clés ALPHA et EPS	11
6.2Utilisation en mode interactif	11
6.2.1 Rappel des principes théoriques	12
6.2.2 Les concepts à utiliser	13
6.2.3 Visualisation des résultats	<u>13</u>
7 Interface CALC_ESSAI – Onglet « Traitement du signal »	14

Fascicule u4.90 : Impression/Test

Date : 05/11/2012 Page : 3/18 Clé : U4.90.01 Révision : 10031

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON

◊ INTERACTIF = /'OUI',

2 Syntaxe

CALC ESSAI(

[DEFAUT]

Date : 05/11/2012 Page : 4/18 Clé : U4.90.01 Révision : 10031

/'NON', 1. Expansion d'un modèle expérimental sur base numérique (MACRO EXPANS) ♦ EXPANSION = $F(\blacklozenge CALCUL = calcul,$ [mode meca] ♦ MESURE = mesure, [mode meca, dyna harmo] ◆ NUME MODE CALCUL = L I, $[L_I]$ ◆ NUME MODE MESURE = L I, [L I] RESOLUTION = /'SVD', \Diamond [DEFAUT] /'LU', # Si RESOLUTION = 'SVD', \diamond EPS = /0., [DEFAUT] /epsilon, [R]), 2. Modification structurale ♦ MODIFSTRUCT = F(♦ MESURE = mesure, [mode meca] ♦ MODELE SUP = modele, [modele] ♦ MODELE MODIF = modele, [modele] ♦ NUME_MODE_CALCUL = L_I, $[L_I]$ ♦ NUME MODE MESU = L I, $[L_I]$ ♦ MATR RIGI = matrice, [matr asse] \diamond RESOLUTION = /'ES', [DEFAUT] /'LMME', Si RESOLUTION = 'LMME', ♦ MATR MASS = matrice, [matr asse]), Si MODIFSTRUCT : ♦ GROUP NO CAPTEURS = $F(\blacklozenge GROUP NO = gr no,$ [mode meca] ♦ NOM_CMP = nom_cmp, [matr asse]), ◊ GROUP NO EXTERIEUR = F(♦ GROUP NO = gr no, [mode meca] ♦ NOM CMP = nom cmp, [matr asse]

Manuel d'utilisation

Fascicule u4.90 : Impression/Test

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Révision : 10031

Date : 05/11/2012 Page : 5/18 Clé : U4.90.01

Code Aster Titre : Macro-commande CALC ESSAI

Responsable : Albert ALARCON

), \Diamond RESU MODIFSTRU = F(\Diamond MODE MECA = mode, [mode meca] ♦ MODELE = modele, [modele] ♦ MAILLAGE = maillage, [maillage] ◊ NUME DDL= nume, [nume ddl] \Diamond MASS MECA = masse, [matr asse] ◊ RIGI MECA = raid, [matr_asse] \Diamond AMOR MECA = amor, [matr asse] ♦ MACR ELEM = macre, [macr elem stat] ♦ PROJ MESU = proj, [mode_gene] | \Diamond BASE LMME = ba lmme, [mode meca] | \Diamond BASE ES = ba es, [mode meca] \Diamond MODE STA = modesta [mode stat force]),

5. Identification d'efforts avec localisation a priori

<pre>◊ IDENTIFICATION = _F(</pre>	C(♦ BASE = base,	[mode_meca]
	<pre>INTE_SPEC = intsp,</pre>	[interspectre]
	♦ OBSERVABILITE = mode_obs,	[mode_meca]
	♦ COMMANDABILITE = mode_com,	[mode_meca]
	<pre> RESU_EXPANSION =/'OUI',</pre>	[defaut]
	<pre> EPS = /0., /epsilon, ALPHA = /0., /alpha, </pre>	[defaut] [R] [defaut] [R]
♦ RESU_IDENTIFICATIO	$PN = F(\bullet TABLE = table,$	[fonction]

6. Traitement du signal avec l'opérateur CALC SPEC

Il n'y a pas de mot-clé spécifique associé à cette fonctionnalité : cette commande ne peut pas être utilisée en mode non interactif (il vaut mieux utiliser directement l'opérateur CALC SPEC), et les noms des concepts sortants sont actuellement donnés par défaut :

- ◆ FRF pour les fonctions de réponse en fréquence,
- ♦ Spec pour les inter-spectres,
- Coh pour les cohérences.

)

Date : 05/11/2012 Page : 6/18 Clé : U4.90.01 Révision : 10031

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 7/18 Clé : U4.90.01 Révision : 10031

3 Introduction

3.1 Objectifs de la commande

La macro-commande CALC_ESSAI permet de réaliser des calculs d'identification à partir de données mesurées : expansion de données expérimentales sur modèle numérique, identification d'efforts, et modification structurale. Elle peut fonctionner en mode non-interactif, mais ce n'est pas la manière la plus pertinente. En interactif, elle utilise une IHM (codée en python/Tk) qui permet d'effectuer plusieurs essais d'identification à la suite en vérifiant immédiatement la qualité des résultats. Cette utilisation permet à l'utilisateur de choisir au mieux les paramètres du calcul pour arriver à un résultat convenable :

- 1) Choix des modes de la base d'expansion,
- 2) Choix des points de localisation a priori (pour les efforts, onglet turbulent),
- 3) Choix des paramètres de régularisation,
- 4) ...

3.2 Paramètres de visualisation

La macro-commande utilisée en interactif possède des outils permettant d'observer des résultats intéressants :

- Visualisation de déformées,
- Visualisation de courbes,
- Visualisation de MAC (opérateur MAC_MODES, visualisation Tk).

Dans l'IHM, la visualisation peut se contrôler avec l'onglet « paramètres de visualisation » qui permet d'opter pour :

- 1) GMSH pour les déformées et XMGrace pour les courbes,
- 2) Salomé.

Si l'utilisateur a lancé Salomé avant la macro-commande, l'affichage des résultats se fait par défaut selon la seconde option. Il est également possible, si on a lancé Salomé sur une machine distante avec un affichage en local, de renvoyer les résultats vers cette session de Salomé, en donnant les paramètres de la machine distante.

3.3 Concepts sortants

Dans l'onglet EXPANSION de la macro-commande, il est possible de nommer interactivement le concept sortant, et de créer ainsi autant de concepts sortants que l'on souhaite. A chaque nouveau calcul, on actualise les menus déroulants en ajoutant les nouveaux concepts. Par contre, étant donné que ces concepts n'ont pas été pré-déclarés, il ne peuvent pas être utilisés dans la suite du calcul, sauf en poursuite. Dans l'onglet de traitement du signal, les concepts sont nommés interactivement au moment de leur création. Par contre, il n'est pas possible de choisir leur nom : les inter-spectres sont nommés Spec, les fonctions de transfert FRF et les fonctions de cohérence Coh.

Dans l'onglet d'identification d'efforts, il est nécessaire de pré-déclarer les concepts sortants à l'appel de la macro-commande. Dans ce cas, on ajoute un mot-clé facteur RESU_IDENTIFICATION. Les concepts peuvent ensuite être utilisés dans la suite du calcul, sans avoir à passer par une poursuite.

4 Utilisation de l'expansion modale (EXPANSION)

4.1 Mots-clés en mode non-interactif

Le mode d'utilisation non-interactif de cette option n'est pas très pertinent, il est surtout utile pour la validation. Il est préférable, si l'on souhaite effectuer une expansion modale, d'utiliser directement la commande MACRO_EXPANS, ou l'enchaînement PROJ_MESU_MODAL, REST_GENE_PHYS et PROJ CHAMP.

Version

4.1.1 Mots-clés mesure et nume mode mesure

♦ MESURE = mesure,

Concept sd_resultat de type mode_meca ou dyna_harmo qui contient les modes à étendre sur le modèle numérique.

♦ NUME_MODE_MESURE = L_I,

Permet de sélectionner les numéros d'ordre des modes que l'on souhaite étendre.

4.1.2 Mot-clé CALCUL

♦ CALCUL = calcul,

Concept sd_resultat de type mode_meca qui sera la base d'expansion. Le choix de la base d'expansion est important pour la qualité des résultats.

◆ NUME MODE CALCUL = L I,

Permet de sélectionner les numéros d'ordre des modes que l'on souhaite utiliser dans la base d'expansion. Il est plus intéressant de ne garder que les modes qui « ressemblent » aux déformées à étendre, le critère de ressemblance pouvant être obtenu par calcul de MAC.

4.1.3 Mots-clés RESOLUTION et EPS

L'expansion consiste en la résolution d'un problème inverse pour la détermination des coefficients généralisés PROJ_MESU_MODAL. Les méthodes d'inversion et coefficients de régularisation sont détaillés dans la documentation utilisateur de cet opérateur (cf [U4.73.01]).

4.2 Utilisation en interactif

En interactif, l'appel de la macro-commande ouvre la fenêtre suivante :

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 9/18 Clé : U4.90.01 Révision : 10031

Figure 4-1 : onglet « Expansion de données ».

4.2.1 Principes théoriques

Le principe d'une expansion de données consiste à trouver la meilleure combinaison linéaire de vecteurs bien choisis (la base d'expansion) permettant, le projetant sur l'espace de la mesure, de retrouver les données mesurées. Si on note C, l'opérateur d'expansion du modèle numérique vers l'espace de la mesure, on cherche à résoudre le problème d'optimisation suivant (PROJ_MESU_MODAL dans Aster) :

$$\min_{n} \left\| C. \Phi_{num} . \eta - \Phi_{exp} \right\|$$

La base de modes étendus est ensuite calculée de la manière suivante (REST_GENE_PHYS dans Aster) :

$$\Phi_{et} = \Phi_{num} \cdot \eta$$

Les modes étendus « ressemblent » aux modes expérimentaux, mais sont définis sur tous les nœuds du maillage numérique, ce qui permet d'accéder à des données non mesurées par post-traitement comme on le ferait pour n'importe quel calcul numérique.

Le point sensible est le choix de la base d'expansion. Les vecteurs qui la composent peuvent être des modes propres du modèles numériques, enrichis par des champs de déformées, tels que des relèvements statiques.

4.2.2 Exécution du calcul

En appuyant sur le bouton « calculer », on calcule 4 concepts sortant :

- XX_EX, extraction des déformées sélectionnées dans la fenêtre « Modes Expérimentaux »,
- XX_ET, modes étendus (Φ_{et}),
- XX NX, extraction des déformées sélectionnées dans la fenêtre « Modes Numériques »,
- XX RD, reprojection des modes étendus sur le maillage expérimental.

XX est le nom de base donné dans la fenêtre «Exporter ». Le concept XX_RD permet de vérifier si les modes reprojetés « ressemblent » aux modes étendus. C'est un critère de qualité.

4.2.3 Visualisation

Dans la fenêtre de visualisation (onglet « paramètres et visualisation »), on peut choisir simultanément un ou deux concepts à visualiser et à comparer. La comparaison peut se faire par critère de MAC, en superposant les déformées, ou en comparant deux FRF. Si les concepts sont des dyna_harmo, la FRF est déjà calculée. Si les concepts à comparer sont des bases de modes, on peut simuler une FRF : en cliquant sur FRF, on choisit alors un point d'excitation, sur lequel on applique une excitation de type « marteau» (spectre constant sur une fréquence donnée). On choisit ensuite un nœud de visualisation.

Lorsque les bouton MAC est grisé, alors que deux bases ont été sélectionnées en Résultats 1 et 2, cela signifie que les deux concepts sont calculés sur nume_ddl différents et que le calcul de MAC n'est pas possible.

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Version

5 Modification structurale (MODIFSTRUCT)

Cette technique de modification structurale est basée sur la méthode de sous-structuration. La première sous-structure correspond à la structure initiale et la deuxième sous-structure correspond à la modification apportée.

La structure initiale est modélisée à partir des modes propres identifiés expérimentalement. La deuxième sous-structure est modélisée numériquement par éléments finis. Sauf cas très particulier, les points de mesure ne se situent pas au niveau de l'interface entre la structure initiale et la modification. Il est donc nécessaire de passer par une étape intermédiaire qui consiste à effectuer une expansion de la mesure sur les degrés de liberté interface. Cette expansion se fait via le modèle numérique support. Les paragraphes suivants décrivent les mots-clés nécessaire dans CALC_ESSAI pour cette fonctionnalité.

. Plus de détails sur la méthode et sur les principes de mise en œuvre dans Code_Aster sont donnés dans la documentation U2.07.03.

5.1 Mots-clés en mode non-interactif

5.1.1 Mot clé MESURE

♦ MESURE = mesure [mode_meca]

mesure est le nom du concept qui contient les modes propres identifiés.

5.1.2 Mot clé MODELE SUP

♦ MODELE SUP = modele [modele]

Nom du modèle support sur lequel est construite la base d'expansion.

5.1.3 Mot clé modele modif

MODELE_MODIF = modele [modele]

Nom du modèle de la modification apportée à la structure initiale.

5.1.4 Mot clé matr rigi

MATR_RIGI = matrice, [matr_asse]

Matrice de rigidité définie sur le modèle support, nécessaire pour le calcul des modes statiques.

5.1.5 Mot clé resolution

RESOLUTION = /'ES',
 /'LMME'

Ce mot-clé permet de choisir la méthode utilisée pour le calcul de la base d'expansion. Es correspond à l'expansion statique et LMME correspond à « Local Model Modeshapes Expansion ».

[DEFAUT]

5.1.6 Mot clé NUME_MODE_MESU

♦ NUME_MODE_MESU = L_I, [1_I]

Ce mot-clé permet de sélectionner les numéros des modes à exploiter parmi les modes propres identifiés. Par défaut, on prend en compte tous les modes propres du concept mesure.

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 11/18 Clé : U4.90.01 Révision : 10031

[l I]

5.1.7 Mot clé nume mode calcul

◆ NUME MODE CALCUL = L I,

Ce mot-clé permet de sélectionner les numéros des modes à utiliser parmi les vecteurs de la base d'expansion. Par défaut, on prend en compte tous les vecteurs de la base d'expansion.

5.1.8 Mot clé group_no_capteurs

Ce mot-clé facteur permet de sélectionner la liste des groupes de nœuds qui vont être utilisés pour le calcul des modes statiques associés aux points de mesure. Ces groupes de nœuds sont définis sur le modèle support.

5.1.9 Mot clé group no exterieur

Ce mot-clé facteur permet de définir les groupes de nœuds « externes » où seront condensées les informations mesurées. Ces groupes de nœuds doivent contenir au minimum l'interface entre le modèle support et le modèle de la modification.

5.2 Utilisation en mode interactif

L'onglet « Modification structurale » comporte les étapes de calcul suivantes :

Saisie des données d'entrée :

Les données d'entrée (concept aster) disponibles sont proposées sous forme de menu déroulant. L'utilisateur choisi les données qui correspondent à son étude. Pour le calcul de la base d'expansion, l'utilisateur a le choix entre la méthode ES et la méthode LMME (voir U2.07.03).

Choix de la base d'expansion :

Après avoir saisi les paramètres de calcul, on peut cliquer sur le bouton Valider qui permet de lancer le calcul de la base d'expansion. On sélectionne ensuite les vecteurs de base qu'on considère être les plus pertinents pour l'expansion de la mesure. Le nombre de vecteurs de base doit être inférieur ou égal au nombre de degrés de liberté de la mesure.

<u>Condensation du modèle et couplage de la modification au modèle condensé :</u> Cette étape est activée par le bouton calculer. Ce bouton lance un calcul modal du modèle couplé et évalue le critère de qualité de la base d'expansion.

Vérification de la qualité de la base d'expansion :

On considère que la base d'expansion est acceptable si on arrive à bien représenter le champ de déplacement à l'interface en utilisant deux méthodes différentes. La base d'expansion est supposée correcte si les termes diagonaux du MAC (produit scalaire) sont proches de 1, ou bien si les termes diagonaux du critère IERI (écart énergétique) sont nuls. Le calcul du critère IERI nécessite la saisie d'une matrice de pondération. Cette matrice de pondération est soit la matrice de rigidité, soit la matrice de masse.

Visualisation des résultats obtenus :

La fenêtre de visualisation permet de comparer les déformées modales initiales mesurées aux déformées modales de la structure modifiée. Elle permet aussi de comparer la réponse harmonique mesurée sur la structure initiale sélectionnée par l'utilisateur et la réponse harmonique sur la structure modifiée.

Code Aster

default

Version

Titre : Macro-commande CALC ESSAI Responsable : Albert ALARCON

Date : 05/11/2012 Page : 12/18 Clé : U4.90.01 Révision : 10031

L'IHM associée à cette fonctionnalité est présentée sur la figure suivante :

Figure 5-1 : onglet de modification structurale.

On rappelle que les différentes étapes de calcul et les commandes sous-jacentes sont présentées en détail dans le document U2.07.03.

5.3 Les concepts produits

L'utilisateur peut spécifier les noms des concepts produits par l'interface en renseignant le mot-clé facteur RESU MODIFSTRU. Ces concepts pourront ensuite être utilisés pour des calculs ultérieurs.

 \Diamond MODE MECA = mode, [mode meca]

mode sera le nom du concept qui contient les modes propres de la structure modifiée.

♦ MODELE = modele, [modele]

modele sera le nom associé au modèle de la structure modifiée.

♦ MAILLAGE = maillage, [maillage]

maillage sera le nom du maillage associé à la structure modifiée.

♦ NUME DDL= nume, [nume ddl]

nume sera le nom du concept nume ddl associé à la structure modifiée.

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 13/18 Clé : U4.90.01 Révision : 10031

```
♦ MASS_MECA = masse, [matr_asse]
```

masse sera le nom du concept qui contient la matrice de masse assemblée de la structure modifiée.

◊ RIGI MECA = raid, [matr asse]

raid sera le nom du concept qui contient la matrice de rigidité assemblée de la structure modifiée.

◊ AMOR MECA = amor, [matr asse]

amor sera le nom du concept qui contient la matrice d'amortissement assemblée de la structure modifiée.

```
◊ MACR_ELEM = macrel, [macr_elem_stat]
```

macrel sera le nom du concept qui contient le macro-élément où est condensée la mesure.

◊ PROJ MESU = proj, [mode gene]

proj sera le nom du concept qui contient les coordonnées généralisées des modes identifiés relatives à la base d'expansion.

◊ BASE_LMME _ = balmme, [mode_meca]

balmme sera le nom de la base d'expansion issue de la méthode LMME.

◊ BASE_ES _ = baes, [mode_meca]

baes sera le nom de la base d'expansion issue de l'expansion statique (méthode ES).

◊ MODE_STAT = modest, [mode_stat_force]

modest sera le nom du concept qui contient les modes statiques associés aux points de mesure.

6 Identification d'efforts localisés *a priori* (IDENTIFICATION)

6.1 Mots-clés en mode non-interactif

6.1.1 Mot clé INTE SPEC

INTE_SPEC = intsp

Inter-spectre qui sera utilisé pour le mode non-interactif en tant que déplacements, pour retrouver les efforts associés.

6.1.2 Mot clé RESU_EXPANSION

♦ RESU_EXPANSION = 'OUI'/'NON'

Permettait de réaliser dans la même commande CALC_ESSAI une expansion de modes propres, et d'utiliser le résultat de celle-ci pour la phase d'identification. Cette fonctionnalité n'est plus utilisable en non-interactif.

6.1.3 Mots clés observabilite et commandabilite

♦ OBSERVABILITE = observ

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 14/18 Clé : U4.90.01 Révision : 10031

Version

default

COMMANDABILITE = command

Concept de type mode_meca. Correspondent respectivement aux objets $C \Phi$ et $\Phi^T B$ décrits dans la section 6.2. En mode interactif, on peut les créer à partir d'un modèle, d'une base de déformées et d'un assistant de sélection des degrés de liberté actifs. En mode non-interactif, on peut soit choisir un mode meca brut, soit le fabriquer avec l'opérateur OBSERVATION (U4.90.03).

6.1.4 Mots-clés Alpha et Eps

- ♦ ALPHA = reel
- ♦ EPS = reel

Paramètres de régularisation. Plus de détails section 6.2.2. Le paramètre m n'est pas paramétrable en non-interactif, il est fixé à 0.

6.2 Utilisation en mode interactif

L'IHM associée à cette fonctionnalité est la suivante :

Figure 6-1 : onglet identification d'efforts.

6.2.1 Rappel des principes théoriques

L'identification des efforts suppose que l'on peut décomposer le mouvement de la structure étudiée sur base modale :

$$y(\omega) = [C \Phi] \cdot [Z(\omega)]^{-1} [\Phi^T B] \cdot f(\omega)$$

Manuel d'utilisation

Fascicule u4.90 : Impression/Test

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 15/18 Clé : U4.90.01 Révision : 10031

Version

default

Dans les équations suivantes, on omettra la dépendance par rapport à ω . Φ est une base de déformées modales associée à la structure étudiée. En théorie, il s'agit de la base des déformées continues. En pratique, on utilise en général une base définie sur un modèle numérique avec une discrétisation relativement fine. Cette base peut être calculée numériquement, ou être le résultat d'une expansion modale. L'opérateur *C* permet de projeter cette base de déformées sur le sousespace des degrés de liberté observables.

L'opérateur *B* permet de projeter la base de déformées sur un ensemble de degrés de liberté appelés actionneurs : on trouve ici une des hypothèses fondamentales de l'identification : **les efforts**

identifiés sont localisés sur des degrés de liberté déclarés *a priori* par l'utilisateur, comme on l'a fait pour déclarer les degrés de liberté de mesure (utilisation de l'opérateur OBSERVATION). L'objectif est de diminuer au maximum le nombre d'inconnues à déterminer, ce qui permet d'éviter les problèmes de sous-détermination du problème.

Identifier les efforts revient à inverser le système ci-dessus :

$$f = [\Phi^T B]^{-1} [Z] . [C\Phi]^{-1} y$$
 (8-1)

NB : la base Φ peut être différente à droite et à gauche de Z : c'est le cas lorsque les mesures disponibles sont des déformations. L'équation reliant l'effort à la mesure s'écrit alors :

$$f = [\Phi^T B]^{-1} [Z] . [C\Psi]^{-1} \epsilon$$
 (8-2)

où la matrice Ψ est la donnée des modes en déformation. Attention cependant : écrire cette dernière équation est un abus de langage, car le passage des déplacements aux déformations devrait normalement s'écrire dans l'opérateur de projection (qui, rappelons-le, est linéaire dans le cas de petites déformations), et non en remplaçant Φ par Ψ . Mais en pratique, on importe souvent une base de modes Ψ directement depuis les logiciels de mesure.

6.2.2 Les concepts à utiliser

Observabilité et commandabilité :

Le calcul de $\lfloor C \Phi \rfloor$ se fait dans le cadre « Définition du concept d'observabilité », dans lequel on donne la base de modes Φ , et un modèle expérimental qu contient les degrés de liberté sur lesquels on la projette. On choisit dans les degrés de liberté du modèle expérimental (regroupés par groupes de noeud et de maille) les degrés de liberté correspondant à la mesure. On peut ainsi ne choisir qu'une seule direction si on a utilisé durant la mesure des capteurs mono-axiaux. Il est par ailleurs possible d'effectuer un changement de repère. Pour plus de détail, se reporter à la documentation de l'opérateur OBSERVATION (U4.90.03).

• Il est important que les nœuds les composantes déclarées dans l'inter-spectre soient cohérentes avec les degrés de liberté du concept d'observabilité. Dans le cas où l'inter-spectre est lu par LIRE_INTE_SPEC (FORMAT = 'IDEAS'), les nœuds sont définis en en-tête de chaque dataset ; la table alors créée par cet opérateur garde les notations de ce fichier.

Le calcul de $\left| \Phi^T B \right|$ se fait dans le cadre « Définition du concept de commandabilité ». Le choix des degrés de liberté et les changements de repères potentiels se font selon la même règle. Chaque onglet possède un bouton de choix de base, ce qui permet, comme pour l'équation 8-2, d'utiliser deux bases différentes.

Régularisation :

•

•

L'inversion de la fonction de transfert se fait en deux étapes :

- inversion de $[C \phi] [Z]^{-1}$, qui permet de calculer les efforts modaux,
- inversion de $\left[\Phi^T B \right]$, qui permet de calculer les efforts sur base physique.

Ces deux étapes se font par SVD (SVD de LinearAlgebra, module de python, qui fait appel à une librairie lapack_lite, dans le paquet numpy). Il est possible de régulariser l'inversion de trois manières :

Manuel d'utilisation

Titre : Macro-commande CALC_ESSAI Responsable : Albert ALARCON Date : 05/11/2012 Page : 16/18 Clé : U4.90.01 Révision : 10031

- 1) troncature de la SVD (paramètre ε),
- 2) régularisation de Tikhonov (paramètre α),
- 3) contrôle de la pente : il est possible de multiplier le paramètre α par $(\omega \omega_i)^m$, où ω_i est la

pulsation propre du mode et m un paramètre à déterminer ; cela permet d contrôler la pente de la courbe obtenue pour les hautes fréquences, lorsque le signal mesuré est fortement bruité en HF.

6.2.3 Visualisation des résultats

Dans la colonne de droite, on peut visualiser les fonctions suivantes :

- inter-spectre mesuré (Depl phy),
- efforts modaux (Eff mod),
- déplacements physiques reconstitués à partir des efforts modaux (Depl phy r)
- efforts physiques (Eff phy),
- efforts modaux reconstitués à partir des efforts physiques (Eff mod r),
- déplacements physiques resynthétisés à partir des efforts physiques (Eff synt),
- valeurs singulières de la matrices $[C \Phi] . [Z]^{-1}$ (Valeurs sing),
- paramètre de régularisation $\alpha \left(\omega \omega_i\right)^m V$ (regul), où V est la matrices des vecteurs propres à droite de $[C \Phi] [Z]^{-1} ([C \Phi] . [Z]^{-1} = [U] . diag (\sigma_i) [V^H])$.

En cliquant sur « Exporter inter-spectre », on crée un concept sortant la macro. Il n'est pas possible de choisir le nom, celui-ci ayant été pré-déclaré en entrée de la macro-commande, mais on peut ajouter un titre.

En cliquant sur « Afficher courbe », après avoir sélectionné les courbes à visualiser dans les 2 colonnes, on lance le visualiseur (XMGrace ou Salomé).

7 Interface CALC_ESSAI – Onglet « Traitement du signal »

L'onglet « Traitement du signal » de l'IHM CALC_ESSAI permet de piloter interactivement l'opérateur CALC_SPEC de *Code_Aster*. Cet opérateur permet de construire des inter-spectres, des auto-spectres et des fonctions de transferts à partir de fonctions correspondant à des échantillons temporels. Diverses options de fenêtrage et de moyennage sont disponibles. L'utilisation de CALC_SPEC, ainsi que les traitements réalisés, sont décrits précisément dans la documentation U4.32.21. On ne présente ici que l'utilisation de l'onglet.

Cet onglet se décompose en trois parties, réparties dans les différents cadres. Le premier cadre présente les concepts contenant des informations disponibles, compatibles avec les traitements proposés par CALC_SPEC. Ces concepts doivent être de type table_fonction, et contenir des fonctions dont l'abscisse est repérée par une liste d'instants (NOM_PARA='INST') dont le pas est constant, et identique pour toutes les fonctions. Ces fonctions sont repérées par des numéros d'ordre et de mesure

Code Aster

Date : 05/11/2012 Page : 17/18 Clé : U4.90.01 Révision : 10031

Figure 7-1: Onglet « Traitement du signal » de l'IHM CALC ESSAI

La sélection du concept s'effectue en cliquant sur le nom du concept, pour le mettre en surbrillance, puis en cliquant sur le bouton présentant un pictogramme de flèche (=>). Les fonctions, repérées par les numéros des points (NUME_ORDRE_I) et de mesure (NUME_MES), apparaissent dans la colonne sous le titre « Points de mesures ». Les échantillons susceptibles de servir de points de références sont listés sous le titre « Points de référence ». La sélection des données pour les différent traitement s'effectue simplement en mettant en surbrillance les noms des fonctions.

Actuellement, les résultats générés dans l'onglet ne peuvent pas être exportés dans l'environnement de Code_Aster. Ils peuvent cependant être utilisés pour la visualisation dans Xmgrace ou Salomé.

8 Paramètres et visualisation

L'IHM « Paramètres et visualisation » permet, dans un premier temps, de choisir les options de visualisation :

•Gmsh/Xmgrace : les résultats de type mode_meca sont visualisés avec Gmsh, les courbes avec Xmgrace et les matrices de MAC avec un utilitaire graphique python/Tk,

• Salomé : tous les résultats sont visualisés dans Salomé.

Les études Salomé ouvertes sont recensées dans le tableau correspondant. Il n'est pas possible de travailler sur une cession de Salomé distante.

 default

 Date : 05/11/2012
 Page : 18/18

 Clé : U4.90.01
 Révision : 10031

Version

Figure 8-1: CALC ESSAI, onglet « Paramètres et visualisation »

En sélectionnant un résultat, on peut, par la suite, cliquer sur la bouton « Observation » pour le projeter sur un modèle expérimental avec la macro-commande OBSERVATION . On ouvre alors la fenêtre suivante :

Figure 8-2: fenêtre OBSERVATION

Si le résultat choisi a déjà été créé par OBSERVATION, alors les DDL et paramètres de changement de repère sont cochés par défaut dans l'interface. Il est alors possible de les modifier en interactif. Il n'est actuellement pas possible de sélectionner les nœuds seuls (sauf à créer un groupe de nœuds pour chaque nœud du modèle expérimental.