Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...] Date : 23/12/2008 Page : 1/6
Responsable : Nicolas GREFFET Clé : U3.13.03 Révision : 0

Organisme(s): EDF-R&D/AMA, DeltaCAD

Manuel d'Utilisation

Fascicule U3.13 : Eléments finis mécaniques 2D

Document : U3.13.03

Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE, AXIS_FLUI_STRU

Résumé:

Ce document décrit pour les modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE, AXIS_FLUI_STRU:

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- les mailles supports afférentes,
- les chargements supportés,
- les possibilités non linéaires,
- les cas-tests mettant en œuvre les modélisations.

Les modélisations 2D_FLUIDE (éléments dans un plan) et 2D_FLUI_STRU (éléments 1D d'intéraction fluide-structure) correspondent à la formulation en 2D en hypothèse linéaire du problème couplé permettant l'étude du comportement vibratoire d'une structure en présence d'un fluide non visqueux, compressible [R4.02.01]. Actuellement, la prise en compte de la surface libre n'est pas développée.

Les modélisations AXIS_FLUIDE (éléments dans un plan) et AXIS_FLUI_STRU (éléments 1D d'intéraction fluide-structure) correspondent à la formulation en axisymétrie en hypothèse linéaire du problème couplé permettant l'étude du comportement vibratoire d'une structure en présence d'un fluide

Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...] Date : 23/12/2008 Page : 2/6
Responsable : Nicolas GREFFET Clé : U3.13.03 Révision : 0

non visqueux, compressibles [R4.02.01]. Actuellement, la prise en compte de la surface libre n'est pas développée.

Manuel d'utilisation Fascicule u3.13 : Eléments finis 2D

Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...]

Responsable : Nicolas GREFFET

Date : 23/12/2008 Page : 3/6
Clé : U3.13.03 Révision : 0

1 Discrétisation

1.1 Degrés de libertés

Elémént fini	Degrés de liberté (à chaque nœud sommet)	
MEFLTR3, MEFLTR6,	PRES: pression	
MEFLQU4, MEFLQU8,	PHI : potentiel de déplacement	
MEFLQU9	•	
MEFLSE2, MEFLSE3	PHI : potentiel de déplacement fluide	
MEFSSE2, MEFSSE3	DX, DY: composantes de déplacement structure	
	PHI : potentiel de déplacement fluide	
MEAXFLT3, MEAXFLT6,	PRES : pression	
MEAXFLQ4, MEAXFLQ8,	PHI : potentiel de déplacement	
MEAXFLQ9		
MEAXFLS2, MEAXFLS3	PHI: potentiel de déplacement fluide	
MEAXFSS2, MEAXFSS3	DX, DY: composantes de déplacement structure	
	PHI : potentiel de déplacement fluide	

1.2 Maille support des matrices de rigidité

Modélisation	Maille	Elément fini	Remarques
2D_FLUIDE	TRIA3	MEFLTR3	
	TRIA6	MEFLTR6	
	QUAD4	MEFLQU4	
	QUAD8	MEFLQU8	
	QUAD9	MEFLQU9	
2D_FLUI_STRU	SEG2	MEFSSE2	
	SEG3	MEFSSE3	
AXIS_FLUIDE	TRIA3	MEAXFLT3	
	TRIA6	MEAXFLT6	
	QUAD4	MEAXFLQ4	
	QUAD8	MEAXFLQ8	
	QUAD9	MEAXFLQ9	
AXIS_FLUI_STRU	SEG2	MEAXFSS2	
	SEG3	MEAXFSS3	

1.3 Maille support des chargements

Modélisation	Maille	Elément fini	Remarques
2D_FLUIDE	SEG2	MEFLSE2	
	SEG3	MEFLSE3	
AXIS_FLUIDE	SEG2	MEAXFLS2	
	SEG3	MEAXFLS3	

Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...]

Page : 4/6

Responsable : Nicolas GREFFET

Date : 23/12/2008 Page : 4/6

Clé : U3.13.03 Révision : 0

2 Chargements supportés

Les chargements supportés sont les suivants :

• VITE FACE

Permet de spécifier le champ de vitesse normale réel, vibratoire imposé en chargement sur des éléments de frontière.

Modélisations supportées : 2D FLUIDE, AXIS FLUIDE

IMPE FACE

Permet de spécifier la carte d'impédance réelle imposée en condition aux limites sur des éléments de frontière.

Modélisations supportées : 2D FLUIDE, AXIS FLUIDE

• ONDE FLUI

Permet de spécifier une amplitude de pression d'onde incidente réelle sinusoïdale arrivant normalement à une face.

Modélisations supportées : 2D FLUIDE, AXIS FLUIDE

3 Possibilités non-linéaires

3.1 Lois de comportements

La seule relation de comportement disponible dans DYNA_NON_LINE, pour les modélisations **2D_FLUI_STRU** et AXIS_FLUI_STRU sous COMP_INCR est la RELATION 'ELAS' (Cf. [U4.51.11]).

3.2 Déformations

Seul les déformations linéarisées mot-clé 'PETIT' sous DEFORMATION sont disponibles dans les relations de comportement (Cf. [U4.51.11]).

Exemples de mise en œuvre : cas-tests

• 2D FLUIDE

FDLV111B [V8.01.111] : Calcul de l'absorption d'une onde de pression créée par un piston, dans une colonne fluide.

• AXIS FLUIDE

AHLV101C [V8.22.101] : Calcul du champ de pression acoustique de la réponse harmonique d'un guide d'onde rectiligne à sortie anéchoïque, à parois rigides, dont le milieu de propagation est de l'air "normal", excité par un piston vibrant harmoniquement.

2D_FLUI_STRU

Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...]

Responsable : Nicolas GREFFET

Date : 23/12/2008 Page : 5/6
Clé : U3.13.03 Révision : 0

FDLV111B [V8.01.111] : Calcul de l'absorption d'une onde de pression créée par un piston, dans une colonne fluide.

• AXIS FLUI STRU

ADLV100C [V8.21.100] : Piston couplé à une colonne fluide : calcul en couplage fluide acoustique-structure du premier mode d'un système fluide 1 - piston fluide 2.

Titre : Modélisations 2D_FLUIDE, 2D_FLUI_STRU, AXIS_FLUIDE[...]

Date : 23/12/2008 Page : 6/6

Responsable : Nicolas GREFFET Clé : U3.13.03 Révision : 0

Page laissée intentionnellement blanche.