

Version

Relation de comportement **BETON_UMLV_FP** pour le fluage propre du béton

Résumé :

Ce document présente le modèle de fluage propre UMLV (comportement BETON_UMLV_FP), qui est une façon de modéliser le fluage propre du béton.

On y détaille également l'écriture et le traitement numérique du modèle. L'intégration du modèle (c'est à dire la mise à jour des contraintes) est réalisé suivant un schéma incrémental à partir de l'incrément de déformations totales fourni par le schéma de résolution global.

On ajoute la description du couplage entre le fluage propre et le modèle de MAZARS. L'intégration du modèle (c'est à dire la mise à jour des contraintes) est réalisé suivant un schéma « total » à partir des déformations totales cumulées depuis l'état initial avant chargement.

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 2/20 Clé : R7.01.06 Révision : 7598

Table des Matières

1 Introduction	<u>3</u>
2 Hypothèses	3
3 Description du modèle [bib1]	4
3.1 Description de la partie sphérique	4
3.2 Description de la partie déviatorique	5
4 Discrétisation des équations constitutives du modèle	6
4.1 Discrétisation des équations constitutives du fluage sphérique	6
4.2 Discrétisation des équations constitutives du fluage déviatorique	10
5 Matrice tangente	12
6 Couplage entre BETON_UMLV_FP et MAZARS	14
6.1 Mise en œuvre pour une modélisation locale de l'endommagement	14
6.1.1 Mise à jour des variables internes du fluage	14
6.1.2 Evolution de l'endommagement	14
6.2 Mise en oeuvre dans le cadre d'une modélisation en gradient de déformations	16
6.3 Réponse en traction	16
7 Description des variables internes	17
8 Notations	18
9 Bibliographie	20
10 Fonctionnalités et vérification	20
11 Description des versions du document	20

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Version

1 Introduction

Dans le cadre des études du comportement à long terme de structures en béton, une part prépondérante des déformations mesurées sur structure concerne les déformations différées qui apparaissent dans le béton au cours de sa vie. Elles comportent les retraits au jeune âge, le retrait de dessiccation, le fluage propre et le fluage de dessiccation.

Le modèle présenté ici est dédié à la modélisation de la déformation différée associée au fluage propre. Le fluage propre est, en complément du fluage de dessiccation, la part de fluage du béton qu'on observerait lors d'un essai sans échange d'eau avec l'extérieur. Expérimentalement le béton en fluage propre présente un comportement visqueux vieillissant. La déformation de fluage observée est proportionnelle à la contrainte de chargement, dépend de la température et de l'hygrométrie.

Les modèles de fluage des bétons existants (ex. : modèle de Granger – voir [bib4] et [R7.01.01]) ont été développés dans l'optique de prédire les déformations longitudinales de fluage sous des contraintes uniaxiales. La généralisation de ces modèles, afin de prendre en compte un état de contraintes multiaxiales, se fait alors par l'intermédiaire d'un coefficient de Poisson de fluage arbitraire, constant et égal, ou proche, du coefficient de Poisson élastique. Or, la détermination *a posteriori* du coefficient de Poisson de fluage effectif montre sa dépendance vis-à-vis du chemin de chargement. Par ailleurs, le béton de certains ouvrages du Parc EDF, telles les enceintes de confinement de réacteur nucléaire, est soumis à un état de contraintes biaxiales. Ce constat a conduit à la mise au point de la loi de déformations de fluage propre UMLV (Université de Marne-la-Vallée, partenaire dans le développement de ce modèle) pour laquelle le coefficient de Poisson de fluage est une conséquence directe du calcul des déformations principales.

Dans Code_Aster, le modèle est utilisé sous le nom de BETON UMLV FP.

2 Hypothèses

Hypothèse 1 (H.P.P.)

Le loi est écrite dans le cadre des petites perturbations.

Hypothèse 2 (partition des déformations)

En petites déformations, le tenseur des déformations totales est décomposé en plusieurs termes relatifs aux processus considérés. S'agissant de la description des différents mécanismes de déformations différées des béton, on admet que la déformation totale s'écrive :

E =	$\varepsilon^{e}_{}$	$+ \varepsilon_{-}^{fp}$ -	$+ \varepsilon^{fd}$ -	$+ \varepsilon^{\Re}$	$+ \varepsilon^{rd}$	$+ \varepsilon^{th}$	ég 2-1
	déformation élastique	fluage propre	fluage de dessiccation	retrait endogène	retrait de dessiccation	déformation thermique	6q Z-1

Dans le cadre de cette documentation, on se limitera à la description du fluage propre. A des fins de simplification d'écriture, l'exposant *f* désignera la déformation de fluage propre de sorte que [éq 2-1] se réduise à :

éq 2-2

 $\varepsilon = \varepsilon^e + \varepsilon^f$

N.B. :

Dans la suite le terme « fluage » désignera exclusivement le fluage propre.

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 4/20 Clé : R7.01.06 Révision : 7598

Hypothèse 3 (décomposition des composantes de fluage)

De façon générale, le fluage propre peut être modélisé en combinant le comportement élastique du solide et le comportement visqueux du fluide. Pour la loi présentée, le fluage est décrit comme la combinaison du comportement élastique des hydrates et des granulats et du comportement visqueux de l'eau. Dans le cas de la loi UMLV, on effectue l'hypothèse que le fluage puisse être décomposé en un processus découplant une partie sphérique et une partie déviatorique. Le tenseur des déformations totales de fluage s'écrit alors :

$$\underline{\underline{\varepsilon}}^{J} = \varepsilon^{J^{s}} \underbrace{\underline{1}}_{\substack{spartie \\ sphériaue \\ déviatoriaue}}^{J} + \underbrace{\underline{\varepsilon}}_{partie}^{J^{a}} \text{ avec } \varepsilon^{f^{s}} = \frac{1}{3} tr \underline{\varepsilon}^{f}$$
 éq 2-3

Le tenseur des contraintes peut être développé suivant une forme similaire :

 $\underline{\sigma} = \sigma^{s} \underbrace{\underline{1}}_{partie} + \underbrace{\underline{\sigma}}_{partie}^{d}$ éq 2-4

La loi de fluage UMLV suppose un découplage total entre les composantes sphériques et déviatoriques : les déformations induites par les contraintes sphériques sont purement sphériques et les déformations induites par les contraintes déviatoriques sont purement déviatoriques. Pour tenir compte de l'effet de l'humidité interne, les contraintes sont multipliées par l'humidité relative interne :

$$\varepsilon^{s} = h \cdot f(\sigma^{s})$$
 et $\underline{\varepsilon}^{d} = h \cdot f(\underline{\sigma}^{d})$ éq 2-5

Ou *h* désigne l'humidité relative interne.

La condition [éq 2-5] permet de vérifier a posteriori que les déformations de fluage propre sont proportionnelles à l'humidité relative.

3 Description du modèle [bib1]

3.1 Description de la partie sphérique

Les contraintes sphériques sont à l'origine de la migration de l'eau adsorbée aux interfaces entre les hydrates au niveau de la macro-porosité et absorbée au sein de la micro-porosité dans la porosité capillaire. La diffusion de l'eau interlamellaire des pores d'hydrates vers la porosité capillaire s'effectue de façon irréversible. La déformation sphérique totale de fluage s'écrit donc comme la somme d'une partie réversible et d'une partie irréversible :

$$\varepsilon^{fs} = \underbrace{\varepsilon_r^{fs}}_{partie} + \underbrace{\varepsilon_i^{fs}}_{irréversible}$$

ég 3.1-1

Manuel de référence

Version default

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Version

Clé : R7.01.06 Révision : 7598

Le processus de déformation sphérique du fluage est gouverné par le système d'équations couplées suivant (équations [éq 3.1-2] et [éq 3.1-3]) :

$$\dot{\varepsilon}^{fs} = \frac{1}{\eta_r^s} \left[h \cdot \sigma^s - k_r^s \cdot \varepsilon_r^{fs} \right] - \dot{\varepsilon}_i^{fs} \qquad \text{éq 3.1-2}$$

où k_r^s désigne la rigidité apparente associée au squelette formé par des blocs d'hydrates à l'échelle mésoscopique ;

et η_r^s la viscosité apparente associée au mécanisme de diffusion au sein de la porosité capillaire.

$$\dot{\varepsilon}_{i}^{fs} = \frac{1}{\eta_{i}^{s}} \langle \left[k_{r}^{s} \cdot \varepsilon^{fs} - \left(k_{r}^{s} + k_{i}^{s} \right) \cdot \varepsilon_{i}^{fs} \right] - \left[h\sigma^{s} - k_{r}^{s} \cdot \varepsilon_{r}^{fs} \right] \rangle^{+}$$
 éq 3.1-3

où k_i^s désigne la rigidité apparente associée intrinsèquement aux hydrates à l'échelle microscopique ;

et η_i^s la viscosité apparente associée au mécanisme de diffusion interfoliaire.

Dans [éq 3.1-3], les crochets $\langle \rangle^+$ désignent l'opérateur de Mac Cauley : $\langle x \rangle^+ = \frac{1}{2} (x+|x|)$

Figure 3.1-a : Modèle phénoménologique associé à la partie sphérique du fluage propre

3.2 Description de la partie déviatorique

Les contraintes déviatoriques sont à l'origine d'un mécanisme de glissement (ou mécanisme de quasi dislocation) des feuillets de CSH dans la nano-porosité. Sous contrainte déviatorique, le fluage s'effectue à volume constant. Par ailleurs, la loi de fluage UMLV suppose l'isotropie du fluage déviatorique. Phénoménologiquement, le mécanisme de glissement comporte une contribution réversible viscoélastique de l'eau fortement adsorbée aux feuillets de CSH et une contribution irréversible visqueuse de l'eau libre :

La *j^{ème}* composante principale de la déformation déviatorique totale est régie par les équations [éq 3.2-2] et [éq 3.2-3] :

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

 $\eta_r^d \dot{\varepsilon}_r^{d,j} + k_r^d \varepsilon_r^{d,j} = h \cdot \sigma^{d,j}$ éq 3.2-2

où k_r^d désigne la rigidité associée à la capacité de l'eau adsorbée à transmettre des charges (**load** bearing water);

et η_r^d la viscosité associée à l'eau adsorbée par les feuillets d'hydrates.

$$\eta_i^d \dot{\varepsilon}_i^{d,j} = h \cdot \sigma^{d,j} \qquad \qquad \text{éq 3.2-3}$$

où η_i^d désigne la viscosité de l'eau libre.

Figure 3.2-a : Modèle phénoménologique associé à la partie déviatorique du fluage propre

4 Discrétisation des équations constitutives du modèle

4.1 Discrétisation des équations constitutives du fluage sphérique

On effectue une linéarisation au premier ordre du produit des contraintes et de l'humidité :

$$\sigma(t) \cdot h(t) \approx \sigma_n \cdot h_n + \frac{t - t_n}{\Delta t_n} \left(\Delta \sigma_n \cdot h_n + \sigma_n \cdot \Delta h_n \right)$$

Après discrétisation des contraintes et de l'humidité relative par des fonctions affines, la déformation sphérique de fluage propre est discrétisée par l'équation suivante :

éa 4.1-1

$$\varDelta \varepsilon_n^{fs} = a_n^s + b_n^s \cdot \sigma_n^s + c_n^s \cdot \sigma_{n+1}^s \Leftrightarrow \varDelta \left(tr \ \underline{\varepsilon}^f \right) = 3a_n^s + b_n^s \cdot tr \ \underline{\sigma}_n + c_n^s \cdot tr \ \underline{\sigma}_{n+1}$$
 éq 4.1-2

où σ_n^s et σ_{n+}^s sont les contraintes sphériques au début et à la fin du pas de temps courant. Il faut distinguer deux cas de figures selon que la déformation irréversible doit être prise en compte ou pas.

1^{er} **cas** : la déformation de fluage sphérique irréversible n'est pas prise en compte, l'équation [éq 4.1-2] peut se mettre sous la forme (chaîne de Kelvin simple) :

$$\eta_{r}^{s} \dot{\varepsilon}_{r}^{fs}(t) + k_{r}^{s} \varepsilon_{r}^{fs}(t) = h(t) \sigma_{r}^{s}(t)$$
 éq 4.1-3

Après discrétisation, l'équation précédente peut se mettre sous la forme :

$$\Delta \varepsilon_{r,n}^{fs} = a_{r,n}^{s} + b_{r,n}^{s} \cdot \sigma_{n}^{s} + c_{r,n}^{s} \cdot \sigma_{n+1}^{s} \qquad \qquad \text{éq 4.1-4}$$
référence Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Manuel de référence

Version default

Date : 31/10/2011 Page : 6/20 Clé : R7.01.06 Révision : 7598

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

Date : 31/10/2011 Page : 7/20 Clé : R7.01.06 Révision : 7598

Avec :

1

$$\begin{pmatrix}
a_{r,n}^{s} = \left[\exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{s}}\right) - 1\right] \cdot \varepsilon_{r,n}^{fs} \\
b_{r,n}^{s} = \frac{1}{k_{r}^{s}} \left[\left[-\left(\frac{2\tau_{r}^{s}}{\Delta t_{n}} + 1\right)h_{n} + \frac{\tau_{r}^{s}}{\Delta t_{n}}h_{n+1}\right] \exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{s}}\right) + \left[\left(\frac{2\tau_{r}^{s}}{\Delta t_{n}} - 1\right)h_{n} - \frac{\tau_{r}^{s} - \Delta t_{n}}{\Delta t_{n}}h_{n+1}\right] \right] \qquad \text{éq 4.1-5} \\
c_{r,n}^{s} = \frac{1}{k_{r}^{s}} \left[\frac{\tau_{r}^{s}}{\Delta t_{n}} \exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{s}}\right)h_{n} - \frac{\tau_{r}^{s} - \Delta t_{n}}{\Delta t_{n}}h_{n}\right]$$

La déformation irréversible, quant à elle, ne varie pas :

$$\Delta \varepsilon_{i,n}^{fs} = 0 \Rightarrow \begin{cases} a_{i,n}^{s} = 0 \\ b_{i,n}^{s} = 0 \\ c_{i,n}^{s} = 0 \end{cases}$$
 éq 4.1-6

2nd cas : la déformation de fluage sphérique irréversible doit être prise en compte. A l'aide de la linéarisation [éq 4.1-1],], le système d'équations couplées s'écrit :

$$\begin{vmatrix} \dot{\varepsilon}_{r}^{fs}(t) + 2\dot{\varepsilon}_{i}^{fs}(t) = \frac{1}{\eta_{r}^{s}} \left[\sigma_{n} \cdot h_{n} + \frac{t - t_{n}}{\varDelta t_{n}} \left[\varDelta \sigma_{n} \cdot h_{n} + \sigma_{n} \cdot \varDelta h_{n} \right] - k_{r}^{s} \varepsilon_{r}^{fs}(t) \right] \\ \dot{\varepsilon}_{i}^{fs}(t) = -\frac{1}{\eta_{i}^{s}} \left\{ -2k_{r}^{s} \varepsilon_{r}^{fs}(t) + k_{i}^{s} \varepsilon_{i}^{fs}(t) + \sigma_{n} \cdot h_{n} + \frac{t - t_{n}}{\varDelta t_{n}} \left[\varDelta \sigma_{n} \cdot h_{n} + \sigma_{n} \cdot \varDelta h_{n} \right] \right\}$$
éq 4.1-7

Ce système peut se mettre sous la forme :

$$\underline{\dot{\varepsilon}}^{fs}(t) = \begin{bmatrix} \dot{\varepsilon}_r^{fs}(t) \\ \dot{\varepsilon}_r^{fs}(t) \end{bmatrix} = \underline{\underline{A}} : \underline{\varepsilon}_r^{fs}(t) + \underline{\underline{b}} + (t - t_n) \underline{\underline{c}} \Leftrightarrow \begin{cases} \dot{\varepsilon}_r^{fs}(t) = a_{rr}^s \varepsilon_r^{fs}(t) + a_{ri}^s \varepsilon_i^s(t) + b_r^s + c_r^s(t - t_n) \\ \dot{\varepsilon}_i^{fs}(t) = a_{ir}^s \varepsilon_r^{fs}(t) + a_{ii}^s \varepsilon_i^s(t) + b_i^s + c_i^s(t - t_n) \end{cases}$$
 éq 4.1-8

Manuel de référence

Code Aster

Titre : Relation de comportement BETON UMLV FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

 $\underline{\underline{A}}$, $\underline{\underline{b}}$ et $\underline{\underline{c}}$ sont définis comme suit :

$$\underline{\underline{A}} = \begin{bmatrix} a_{rr}^{s} & a_{ri}^{s} \\ a_{ir}^{s} & a_{ii}^{s} \end{bmatrix} = \begin{bmatrix} -\frac{k_{r}^{s}}{\eta_{r}^{s}} - 4\frac{k_{r}^{s}}{\eta_{i}^{s}} & 2\frac{k_{i}^{s}}{\eta_{i}^{s}} \\ 2\frac{k_{r}^{s}}{\eta_{i}^{s}} & -\frac{k_{i}^{s}}{\eta_{i}^{s}} \end{bmatrix}$$

$$\underline{\underline{b}} = \begin{bmatrix} b_{r}^{s} \\ b_{i}^{s} \end{bmatrix} = \sigma_{n} \cdot h_{n} \begin{bmatrix} \frac{1}{\eta_{r}^{s}} + \frac{2}{\eta_{i}^{s}} \\ -\frac{1}{\eta_{i}^{s}} \end{bmatrix}$$

$$\underline{\underline{c}} = \begin{bmatrix} c_{r}^{s} \\ c_{i}^{s} \end{bmatrix} = \frac{\Delta \sigma_{n} \cdot h_{n} + \sigma_{n} \cdot \Delta h_{n}}{\Delta t_{n}} \begin{bmatrix} \frac{1}{\eta_{r}^{s}} + \frac{2}{\eta_{i}^{s}} \\ -\frac{1}{\eta_{i}^{s}} \end{bmatrix}$$

$$\underline{\underline{c}} = \begin{bmatrix} c_{r}^{s} \\ -\frac{1}{\eta_{r}^{s}} \end{bmatrix}$$

Le système d'équations précédent peut être découplé et résolu dans l'espace des vecteurs propres. Le système d'équations s'écrit en effet :

٦

$$\dot{\varepsilon}_{k}^{*}(t) = \lambda_{k} \, \varepsilon_{k}^{*}(t) + b_{k}^{*} + c_{k}^{*}(t - t_{n}) \text{ avec } \dot{\underline{\varepsilon}}^{*} = \begin{bmatrix} \dot{\varepsilon}_{1}^{*} \\ \dot{\varepsilon}_{2}^{*} \end{bmatrix} = \underline{\underline{P}}^{-1} \cdot \underline{\dot{\varepsilon}} \qquad \qquad \text{éq 4.1-10}$$

Ainsi, dans l'espace des vecteurs propres, le modèle de fluage devient équivalent à une double chaîne de Kelvin. Il est nécessaire de connaître la solution de l'équation homogène (sans second membre), ainsi qu'une solution particulière afin de résoudre l'équation différentielle précédente. La solution homogène de chacune des deux équations est la suivante :

$$\varepsilon_k^*(t) = \mu_k e^{\lambda_k \cdot t} \qquad \text{éq 4.1-11}$$

où μ_k est un paramètre dépendant de la condition initiale. Une solution particulière est obtenue par la méthode de variation de la constante ($\mu_k = \mu_k(t)$. On obtient alors les solutions suivantes :

$$\varepsilon_{k}^{*}(t) = \mu_{k} e^{\lambda_{k} \cdot t} - \frac{1}{\lambda_{k}} \left[b_{k}^{*} + c_{k}^{*} \left(t - t_{n} + \frac{1}{\lambda_{k}} \right) \right]$$
 éq 4.1-12

Les déformations de fluage sphériques réversible et irréversible sont alors égales à :

$$\varepsilon_{r}^{fs}(t_{n+1}) = \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{r}^{s}} + \left(x_{1} \mu_{1} e^{\lambda_{1} t_{n+1}} + \mu_{2} e^{\lambda_{2} t_{n+1}}\right)$$

$$\varepsilon_{i}^{fs}(t_{n+1}) = \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{i}^{s}} + \left(\mu_{1} e^{\lambda_{1} t_{n+1}} + x_{2} \mu_{2} e^{\lambda_{2} t_{n+1}}\right)$$
éq 4.1-13

Version default

Date : 31/10/2011 Page : 8/20 Clé : R7.01.06 Révision : 7598

éq 4.1-9

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 9/20 Clé : R7.01.06 Révision : 7598

Après simplification, on obtient alors les expressions suivantes pour les valeurs de μ_k :

$$\left[\begin{array}{c} \mu_{1} = \frac{1}{\left(x_{1} \cdot x_{2} - 1\right)e^{\lambda_{1}t_{n}}} \left[x_{2} \left(\varepsilon_{r}^{fs}(t_{n}) - \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{r}^{s}} \right) - \left(\varepsilon_{i}^{fs}(t_{n}) - \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{i}^{s}} \right) \right] \\ \mu_{2} = \frac{1}{\left(x_{1} \cdot x_{2} - 1\right)e^{\lambda_{2}t_{n}}} \left[- \left(\varepsilon_{r}^{fs}(t_{n}) - \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{r}^{s}} \right) + x_{1} \left(\varepsilon_{i}^{fs}(t_{n}) - \frac{\sigma_{n} \cdot \varDelta h_{n} + \sigma_{n+1} \cdot h_{n}}{k_{i}^{s}} \right) \right]$$
 éq 4.1-14

L'équation [éq 4.1-2] peut donc se mettre sous la forme, après discrétisation :

$$\Delta \varepsilon_{r,n}^{fs} = a_{r,n}^s + b_{r,n}^s \cdot \sigma_n^s + c_{i,n}^s \cdot \sigma_{n+1}^s$$

$$\Delta \varepsilon_{i,n}^{fs} = a_{i,n}^s + b_{i,n}^s \cdot \sigma_n^s + c_{i,n}^s \cdot \sigma_{n+1}^s$$
éq 4.1-15

Avec :

1

$$\begin{vmatrix} a_{r,n}^{s} = \left[\frac{x_{1} \cdot x_{2} \cdot e^{\lambda_{1} dt_{n}} - e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} - 1 \right] \cdot \varepsilon_{r,n}^{fs} - x_{1} \cdot \left[\frac{e^{\lambda_{1} dt_{n}} - e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} \right] \cdot \max_{k \le n} \left(\varepsilon_{i,k}^{fs} \right) \\ b_{r,n}^{s} = \frac{\Delta h_{n}}{k_{r}^{s}} \cdot \left[\frac{-x_{1} \cdot x_{2} \cdot e^{\lambda_{1} dt_{n}} + e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} + 1 \right] + \frac{\Delta h_{n}}{k_{i}^{s}} \cdot x_{1} \cdot \left[\frac{e^{\lambda_{1} dt_{n}} - e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} \right] \quad \text{éq 4.1-16} \\ c_{r,n}^{s} = \frac{h_{n}}{k_{r}^{s}} \cdot \left[\frac{-x_{1} \cdot x_{2} \cdot e^{\lambda_{1} dt_{n}} + e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} + 1 \right] + \frac{h_{n}}{k_{i}^{s}} \cdot x_{1} \cdot \left[\frac{e^{\lambda_{1} dt_{n}} - e^{\lambda_{2} dt_{n}}}{x_{1} \cdot x_{2} - 1} \right] \end{aligned}$$

$$a_{i,n}^{s} = x_{2} \cdot \left[\frac{e^{\lambda_{1} \Delta t_{n}} - e^{\lambda_{2} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} \right] \cdot \varepsilon_{r,n}^{fs} + \left[\frac{x_{1} \cdot x_{2} \cdot e^{\lambda_{2} \Delta t_{n}} - e^{\lambda_{1} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} - 1 \right] \cdot \max_{k \le n} \left(\varepsilon_{i,k}^{fs} \right)$$

$$b_{i,n}^{s} = \frac{\Delta h_{n}}{k_{r}^{s}} \cdot x_{2} \cdot \left[\frac{e^{\lambda_{2} \Delta t_{n}} - e^{\lambda_{1} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} \right] + \frac{\Delta h_{n}}{k_{i}^{s}} \cdot \left[\frac{-x_{1} \cdot x_{2} \cdot e^{\lambda_{2} \Delta t_{n}} + e^{\lambda_{1} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} + 1 \right] \quad \text{éq 4.1-17}$$

$$c_{i,n}^{s} = \frac{h_{n}}{k_{r}^{s}} \cdot x_{2} \cdot \left[\frac{e^{\lambda_{2} \Delta t_{n}} - e^{\lambda_{1} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} \right] + \frac{h_{n}}{k_{i}^{s}} \cdot \left[\frac{-x_{1} \cdot x_{2} \cdot e^{\lambda_{2} \Delta t_{n}} + e^{\lambda_{1} \Delta t_{n}}}{x_{1} \cdot x_{2} - 1} + 1 \right]$$

Dans les équations [éq 4.1-16] et [éq 4.1-17] les paramètres λ_1 , λ_2 , x_1 et x_2 sont fonction des paramètres intrinsèques du matériau. A chaque pas de calcul, il est nécessaire de sauvegarder **deux** variables internes $\varepsilon_{r,n}^{fs}$, la dernière déformation sphérique réversible obtenue et $\max_{k \le n} \left(\varepsilon_{i,k}^{fs} \right)$, c'est-à-dire $\varepsilon_{i,n}^{fs}$, la plus grande déformation sphérique réversible obtenue dans l'histoire de l'élément. Le choix de retenir les expressions [éq 4.1-5] et [éq 4.1-6] (pas de déformation irréversibles), ou les expressions [éq 4.1-17] (existence de déformations irréversibles) pour déterminer l'incrément de déformation sphérique totale est effectuée *a posteriori* en fonction du signe de $\Delta \varepsilon_{i,n}^{fs}$ dans [éq 4.1-15].

Manuel de référence

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

Date : 31/10/2011 Page : 10/20 Clé : R7.01.06 Révision : 7598

Illustration des réponses numériques obtenues en utilisant les expressions discrétisées [éq 4.1-3] à [éq 4.1-17] pour quatre histoires de chargement : 1 échelon de contrainte unitaire à humidité constante (100%), 2 échelon de contrainte unitaire à humidité linéairement décroissante de 100% à 50%, 3 échelon de contrainte unitaire pendant la moitié de la durée du calcul suivi d'une recouvrance à la moitié de la contrainte initiale sur la seconde partie du calcul ; l'humidité est supposée constante (100%), 4 le chargement mécanique est identique à 3 ; humidité décroît linéairement de 100% à 50%.

Figure 4.1-a

Pour réaliser les simulations de la [Figure 4.1-a] les paramètres suivants ont été retenus : $k_r^s = 2,0e+5$ [MPa]; $\eta_r^s = 4,0e+10$ [MPa.s]; $k_i^s = 1,0e+4$ [MPa]; $\eta_i^s = 1,0e+11$ [MPa.s]. Le calcul comporte 200 intervalles de 5000 [s].

4.2 Discrétisation des équations constitutives du fluage déviatorique

Après discrétisation des contraintes et de l'humidité relative par des fonctions affines, le tenseur déviateur des déformations de fluage propre est discrétisé par l'équation suivante :

$$\Delta \underline{\underline{\varepsilon}}_{n}^{fd} = \underline{\underline{a}}_{n}^{d} + b_{n}^{d} \cdot \underline{\underline{a}}_{n}^{d} + c_{n}^{d} \cdot \underline{\underline{a}}_{n+1}^{d}$$

éq 4.2-1

où \underline{a}_{n}^{d} et \underline{a}_{n+1}^{d} sont les tenseurs des contraintes déviatoriques au début et à la fin du pas de temps courant.

Les étapes effectuées sont :

•On calcule les paramètres par rapport à la déformation de fluage propre déviatorique *réversible*, dont le modèle est :

$$\eta_r^d \underline{\dot{\boldsymbol{\varepsilon}}}_r^{fd}(t) + k_r^d \underline{\boldsymbol{\varepsilon}}_r^{fd}(t) = h(t) \underline{\boldsymbol{\sigma}}^d(t)$$
 éq 4.2-2

Version default

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE default
Date : 31/10/2011 Page : 11/20

Révision : 7598

Clé : R7.01.06

Version

Après discrétisation, l'équation précédente peut se mettre sous la forme :

$$\Delta \underline{\varepsilon}_{r,n}^{fd} = \underline{a}_{r,n}^{d} + b_{r,n}^{d} \cdot \underline{\sigma}_{n}^{d} + c_{r,n}^{d} \cdot \underline{\sigma}_{n+1}^{d} \qquad \text{éq 4.2-3}$$

Avec :

$$\underline{a}_{r,n}^{d} = \left[\exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{d}}\right) - 1 \right] \cdot \underline{\varepsilon}_{r,n}^{f,d}$$

$$b_{r,n}^{d} = \frac{1}{k_{r}^{d}} \left[\left[-\left(\frac{2\tau_{r}^{d}}{\Delta t_{n}} + 1\right)h_{n} + \frac{\tau_{r}^{d}}{\Delta t_{n}}h_{n+1} \right] \exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{d}}\right) + \left[\left(\frac{2\tau_{r}^{d}}{\Delta t_{n}} - 1\right)h_{n} - \frac{\tau_{r}^{d} - \Delta t_{n}}{\Delta t_{n}}h_{n+1} \right] \right] \quad \text{éq 4.2-4}$$

$$c_{r,n}^{d} = \frac{1}{k_{r}^{d}} \left[\frac{\tau_{r}^{d}}{\Delta t_{n}} \exp\left(-\frac{\Delta t_{n}}{\tau_{r}^{d}}\right)h_{n} - \frac{\tau_{r}^{d} - \Delta t_{n}}{\Delta t_{n}}h_{n} \right]$$

Remarque :

L'équation [éq 4.2-4] (partie réversible du fluage déviatorique) est analogue à l'équation [éq 4.1-5] (partie réversible du fluage en l'absence de déformations irréversibles). Elles correspondent à la discrétisation d'une unique chaîne de Kelvin.

On calcule les paramètres par rapport à la déformation de fluage propre déviatorique, dont le modèle est : $\eta_i^d \underline{\dot{e}}_i^{f,d}(t) = h(t) \underline{a}^d(t)$ éq 4.2-5

Après discrétisation, l'équation précédente peut se mettre sous la forme :

$$\Delta \underline{\underline{\varepsilon}}_{i,n+1}^{J,d} = \underline{\underline{a}}_{i,n}^{d} + b_{i,n}^{d} \cdot \underline{\underline{c}}_{n}^{d} + c_{i,n}^{d} \cdot \underline{\underline{c}}_{n+1}^{d} \qquad \text{éq 4.2-6}$$

Avec :

$$\begin{cases}
\underline{a}_{i,n}^{d} = 0 \\
b_{r,n}^{d} = \frac{\Delta t_{n} \cdot h_{n+1}}{2\eta_{i}^{d}} \\
c_{r,n}^{d} = \frac{\Delta t_{n} \cdot h_{n}}{2\eta_{i}^{d}}
\end{cases}$$
éq 4.2-7

Manuel de référence

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 12/20 Clé : R7.01.06 Révision : 7598

Version

default

Illustration des réponses numériques obtenues en utilisant les expressions discrétisées [éq 4.2-1] à [éq 4.2-7] pour quatre histoires de chargement : 1 échelon de contrainte unitaire à humidité constante (100%), 2 échelon de contrainte unitaire à humidité linéairement décroissante de 100% à 50%, 3 échelon de contrainte unitaire pendant la moitié de la durée du calcul suivi d'une recouvrance à la moitié de la contrainte initiale sur la seconde partie du calcul ; l'humidité est supposée constante (100%), 4 le chargement mécanique est identique à 3 ; humidité varie linéairement décroissante de 100% à 50%.

Figure 4.2-a

Pour réaliser les simulations de la [Figure 4.2-a], les paramètres suivants ont été retenus : $k_r^d = 5,0e+4$ [MPa]; $\eta_r^d = 1,0e+10$ [MPa.s]; $\eta_i^d = 1,0e+11$ [MPa.s]. Le calcul comporte 1000 intervalles de 1000 [s].

5 Matrice tangente

En introduisant le module de cisaillement élastique μ , le déviateur des contraintes à l'instant n+1 s'écrit en fonction du déviateur des déformations élastiques :

$$\underline{\underline{\sigma}}_{n+1}^{d} = 2\mu \underline{\underline{\varepsilon}}_{n+1}^{ed} = \underline{\underline{\sigma}}_{n}^{d} + 2\mu\Delta \underline{\underline{\varepsilon}}_{n}^{d} - 2\mu\Delta \underline{\underline{\varepsilon}}_{n}^{f,d}$$
 éq 5-1

En substituant la partie déviatorique de la déformation de fluage propre par l'expression [éq 4.2-1], il découle la relation suivante :

$$\underline{\underline{a}}_{n+1}^{d} (1+2\mu c^{d}) = \underline{\underline{a}}_{n}^{d} (1-2\mu b^{d}) + 2\mu \Delta \underline{\underline{e}}_{n}^{d} - 2\mu a^{d} \underline{1}$$
 éq 5-2

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

Date : 31/10/2011 Page : 13/20 Clé : R7.01.06 Révision : 7598

Expression qui induit par dérivation par rapport à $\underline{\varepsilon}_{n+1}^{d}$:

$$\frac{\partial \underline{\underline{\sigma}}_{n+1}^{d}}{\partial \underline{\underline{\varepsilon}}_{n+1}^{d}} (1 + 2\mu c^{d}) = 2\mu \underline{\underline{1}}$$
 éq 5-3

En effectuant une démarche similaire pour la partie sphérique et en introduisant le module de rigidité à la dilatation K, il suit les trois relations suivantes :

$$tr \ \underline{\sigma}_{n+1} = 3K \ tr \ \underline{\varepsilon}_{n+1}^{e} = tr \ \underline{\sigma}_{n} + 3K \ tr \left(\Delta \underline{\varepsilon}_{n} \right) - 3K \ tr \left(\Delta \underline{\varepsilon}_{n}^{f} \right)$$

$$tr \ \underline{\sigma}_{n+1} \left(1 + 3 \ Kc^{s} \right) = tr \ \underline{\sigma}_{n} \left(1 - 3 \ Kb^{s} \right) + 3K \ tr \left(\Delta \underline{\varepsilon}_{n} \right) - Ka^{s}$$

$$eq 5-5$$

$$\frac{\partial \left(tr \ \underline{\underline{\sigma}}_{n+1}\right)}{\partial \left(tr \ \underline{\underline{\varepsilon}}_{n+1}\right)} \left(1+3 \ Kc^{s}\right) = 3K$$
 éq 5-6

La matrice tangente s'écrit finalement :

.

$$\frac{\partial \underline{\sigma}}{\partial \underline{\varepsilon}} = \frac{\partial \underline{\sigma}^{d}}{\partial \underline{\varepsilon}} + \frac{1}{3} \frac{\partial (tr \ \underline{\sigma})}{\partial \underline{\varepsilon}} \underline{1} = \frac{\partial \underline{\sigma}^{d}}{\partial \underline{\varepsilon}^{d}} \frac{\partial \underline{\varepsilon}^{d}}{\partial \underline{\varepsilon}} + \frac{1}{3} \frac{\partial (tr \ \underline{\sigma})}{\partial (tr \ \underline{\varepsilon})} \frac{\partial (tr \ \underline{\varepsilon})}{\partial \underline{\varepsilon}} \underline{1}$$
 éq 5-7

C'est-à-dire :

Code Aster

$$\frac{\partial \underline{\sigma}}{\partial \underline{\varepsilon}} = \frac{2\mu}{1 + 2\mu c^d} \left(\underline{\underline{1}} - \frac{1}{3} \underline{\underline{1}} \otimes \underline{\underline{1}} \right) + \frac{K}{1 + \frac{3}{\zeta} K c^s} \underline{\underline{1}} \otimes \underline{\underline{1}}$$
 éq 5-8

Après linéarisation, la matrice tangente se développe comme suit :

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 14/20 Clé : R7.01.06 Révision : 7598

6 Couplage entre BETON_UMLV_FP et MAZARS

Le modèle BETON_UMLV_FP est un modèle de comportement viscoélastique linéaire. Pour pouvoir représenter la rupture du béton par fluage tertiaire, on propose dans Code_Aster de coupler le modèle de fluage à un modèle d'endommagement à savoir le modèle de MAZARS (cf. [R7.01.08]). Le couplage est réalisé en supposant d'une part, que les déformations de fluage sont engendrées par les contraintes effectives (soit, celles réellement vues par le matériau) et d'autre part, que seule une partie de la déformation de fluage (supposée constante) contribue à l'évolution de l'endommagement. Le schéma est réalisé en maintenant le lien direct entre état de déformations élastiques et état de contraintes.

6.1 Mise en œuvre pour une modélisation locale de l'endommagement

6.1.1 Mise à jour des variables internes du fluage

Comme pour le reste du document, on se limite ici à la description du couplage entre l'endommagement et le fluage propre. On suppose donc comme précédemment que la déformation s'écrit suivant l'équation [éq 2-2] :

$$\varepsilon = \varepsilon^e + \varepsilon^f$$

où ϵ^{e} , déformation élastique, contient aussi la contribution de l'endommagement (micro - fissuration) engendrée par le modèle de MAZARS. En faisant la somme des équations liées au fluage sphérique[éq 4.1-2] et au fluage déviatorique [éq 4.2-1], on obtient l'incrément des déformations de fluage $\Delta \underline{\underline{\varepsilon}}^{f}$ entre les instants *n* et *n*+1.

$$\Delta \underline{\boldsymbol{\varepsilon}}_{n}^{f} = \underline{\boldsymbol{a}}_{n} + \boldsymbol{b}_{n} \, \underline{\boldsymbol{\sigma}}_{n} + \boldsymbol{c}_{n} \underline{\boldsymbol{\sigma}}_{n+1} \tag{eq 6.1-1}$$

avec \underline{a}_n , $b_n c_n$ les coefficients de fluage propre total en viscoélasticité linéaire. Pour introduire l'endommagement dans le modèle, on suppose que les déformations de fluage sont engendrées par les contraintes effectives, notées $\underline{\sigma}$ ' dans la suite du document. Cela permet d'associer les déformations différées à la partie intègre du matériau, comme proposé dans [1].

On rappelle que les contraintes effectives peuvent être écrites en fonction de la variable d'endommagement D ou (voir aussi la documentation [R7.01.08-B]) comme une loi d'élasticité :

$$\underline{\underline{\sigma}}' = \frac{\underline{\sigma}}{1 - D} = \underline{\underline{E}} \underline{\underline{\varepsilon}}^{e}$$
 éq 6.1-2

Par conséquent, l'équation [éq 6.1-1] devient :

$$\Delta \underline{\varepsilon}_{n}^{f} = \underline{a}_{n} + b_{n} \underline{\sigma}'_{n} + c_{n} \underline{\sigma}'_{n+1} \qquad \text{éq 6.1-3}$$

En utilisant la loi d'élasticité [éq 6.1-2] avec l'équation [éq 6.1-3], on obtient la nouvelle relation pour l'incrément de déformation de fluage :

$$\Delta \underline{\underline{\varepsilon}}_{n}^{f} = \left(1 + c \underline{\underline{E}}\right)^{-1} \left[\underline{\underline{a}}_{n} + b_{n} \underline{\underline{\sigma}}'_{n} + c_{n} \underline{\underline{E}} \left(\underline{\underline{\varepsilon}}_{n+1} - \underline{\underline{\varepsilon}}_{n}^{f}\right)\right] \quad \text{éq 6.1-4}$$

Ainsi, à partir de toutes les quantités connues à l'instant n, il est possible de calculer avec la relation [éq 6.1-4] la déformation de fluage à l'instant n+1. Ensuite, on obtient facilement les contraintes effectives à l'instant n+1 grâce à la relation [éq 6.1-2], et les variables internes du fluage avec les équations [éq 4.1-2] et [éq 4.2-1].

Manuel de référence

$\check{\underline{\varepsilon}} = \underline{\varepsilon} - (1 - \chi) \underline{\varepsilon}^{f}$

T uée à partir des déformations élastiques mais à partir des déformations de couplage $\frac{\varepsilon}{2}$:

6.1.2

L'hypothèse de base est que l'endommagement est piloté par la déformation élastique et une quote-part de la déformation de fluage. Le tenseur de déformation qui pilote l'évolution de D est donné par la relation suivante :

On ne redétaille pas ici le modèle de MAZARS; le lecteur pourra se référer à la documentation de référence

$$\underline{\breve{\underline{\varepsilon}}} = \underline{\underline{\varepsilon}}^e + \chi \underline{\underline{\varepsilon}}^f$$

 $\varepsilon_{ea} = \sqrt{\langle \underline{\breve{\epsilon}} \rangle_{+} : \langle \underline{\breve{\epsilon}} \rangle_{+}}$

avec $0 \le \chi \le 1$, coefficient de couplage.

Titre : Relation de comportement BETON UMLV FP pour le flu[...]

Evolution de l'endommagement

Le niveau de couplage augmente avec χ croissant. Il existe donc deux cas limites : $\chi = 0$ et $\chi = 1$.

•Si, $\chi = 0$ il y a absence de couplage; l'évolution de l'endommagement ne dépend que de le déformation élastique et donc on ne peut pas avoir du fluage tertiaire.

ég 6.2-1

éq 6.2-2b

éq 6.2-3

•Si $\chi = 1$ le couplage est maximal, l'endommagement dépend de la déformation totale. Ce cas conduit généralement à la ruine prématurée de la structure.

Remarquons que l'équation [éq 6.2-1] est équivalente à moyenner les déformations totales et élastiques, en utilisant le coefficient χ comme poids :

$$\underline{\check{\epsilon}} = \chi_{\underline{\epsilon}} + (1 - \chi)_{\underline{\epsilon}}^{e}$$
 éq 6.2-2a
ou à soustraire $1 - \chi$ fois les déformations de fluage des déformations totales :

a déformation équivalente
$$\varepsilon_{_{eq}}$$
 qui pilote l'endommmagement dans la loi couplée n'est plus éval

$$\langle \rangle_{\perp}$$
 correspondant à la partie positive du tenseur.

L'endommagement en traction D_t et en compression D_c sont calculés comme dans le cas non couplé mais avec la déformation équivalente définie dans l'équation [éq 6.2-3] :

$$\begin{split} D_{c} &= 1 - \frac{\varepsilon_{d0}(1 - A_{c})}{\varepsilon_{eq}} - \frac{A_{c}}{\exp(B_{c}(\varepsilon_{eq} - \varepsilon_{d0}))} & \text{éq 6.2-4a} \\ D_{t} &= 1 - \frac{\varepsilon_{d0}(1 - A_{t})}{\varepsilon_{eq}} - \frac{A_{t}}{\exp(B_{t}(\varepsilon_{eq} - \varepsilon_{d0}))} & \text{éq 6.2-4b} \\ (\varepsilon_{d0}, A_{c}, B_{c}, A_{t}, B_{t}) \text{ étant les paramètres matériaux de la loi de Mazars.} \end{split}$$

Comme dans le cas non couplé, une moyenne pondérée de ces deux endommagements par le coefficient α_{t} permet finalement de calculer l'endommagement D_{n+1} :

$$\begin{split} D_{test} &= \alpha_t^{\ \beta} D_t + (1 - \alpha_t)^{\beta} D_c & \text{éq 6.2-5a} \\ D_{n+1} &= \max(D_{n+1}, D_{test}) & \text{éq 6.2-5b} \end{split}$$

Notons que le choix qui a été fait est de conserver la détermination du coefficient α_i à partir des déformations élastiques (et pas les déformations de couplage) :

$$\alpha_{t} = \frac{\sum_{i=1}^{3} \left[\left\langle \varepsilon_{i}^{e} \right\rangle_{+} \varepsilon_{ii} \right]}{\left(\varepsilon_{eq}^{e} \right)^{2}}$$
 éq 6.2-6

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Responsable : Sylvie MICHEL-PONNELLE

Date : 31/10/2011 Page : 15/20 Clé : R7.01.06 Révision : 7598

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Version default Date : 31/10/2011 Page : 16/20

Clé : R7.01.06 Révision : 7598

où \mathcal{E}_{i}^{e} sont les déformations propres du tenseur élastique ; les composantes \mathcal{E}_{ti} du tenseur $\underbrace{\mathcal{E}_{t}}_{=}$ sont calculées à partir des valeurs propres des contraintes élastiques $\sigma_{i}^{'}$ avec la relation élastique suivante :

$$\varepsilon_{ti} = \frac{1+\nu}{E} \left\langle \sigma_{i}^{'} \right\rangle_{+} - \frac{\nu}{E} \left(\left\langle \sigma_{i}^{'} \right\rangle_{+} \right)$$
 éq 6.2-7

et \mathcal{E}_{eq}^{e} est la déformation équivalente élastique, calculé à partir du tenseur de déformation élastique $\underline{\mathcal{E}}^{e}$:

Remarque :

En adoptant l'expression élastique [éq 6.2-8], on retrouve les conditions de la loi de MAZARS: $\alpha_i = 1$ pour la traction pure et $\alpha_i = 0$ pour la compression pure.

6.2 Mise en oeuvre dans le cadre d'une modélisation en gradient de déformations

L'association d'une loi de fluage avec un modèle d'endommagement ne permet pas de régulariser le problème d'endommagement : comme en l'absence de couplage, on observe une dépendance pathologique au maillage (voir les documents de référence Aster [R7.01.08] et [R5.04.02). C'est pourquoi, le couplage a également été réalisé pour la version régularisée du modèle d'endommagement de Mazars.

Les hypothèses retenues sont identiques à la version locale, ce qui fait que :

•le calcul des déformations de fluage est identique puisqu'il ne dépend pas de l'endommagement

• le calcul de l'endommagement se fait de manière similaire à la version non couplée. La seule différence est que la déformation équivalente qui pilote l'endommagement est obtenue à partir du tenseur de déformation de couplage par la relation suivante :

$$\underline{\underline{\varepsilon}} = \underline{\underline{\varepsilon}} - (1 - \chi) \underline{\underline{\varepsilon}}^f \qquad \text{éq 6.3-1}$$

où $\underline{\mathcal{E}}$ est le tenseur de déformation régularisé obtenu par la relation suivante [R5.04.02] :

$$\underline{\underline{\varepsilon}} = \underline{\underline{\varepsilon}} - c\nabla^2 \underline{\underline{\varepsilon}} \qquad \text{éq 6.3-2}$$

La déformation équivalente \mathcal{E}_{eq} est encore trouvée à l'aide de la relation [éq 6.2-3], avec les bornes $0 \le \chi \le 1$.

L'endommagement D_{n+1} est alors calculé par les [éq 6.2-4a,b] , [éq 6.2-5a,b], [éq 6.2-6].

Dans le cas non couplé, le coefficient α_t est trouvé à partir des déformations élastiques locales. On conserve ce choix dans le cas couplé. Par conséquent, son expression est encore donnée par les [éq 6.2-6], [éq 6.2-7], [éq 6.2-8], ce qui permet de retrouver les conditions $\alpha_t = 1$ pour la traction pure et $\alpha_t = 0$ pour la compression pure de la loi de Mazars.

6.3 Réponse en traction

On propose ici un exemple de réponse obtenue avec le modèle couplé. Il s'agit d'un barreau avec section variable, bloquée à un extrémité et avec une charge de traction appliquée à l'extrémité libre.

Sur la figure 6.4-2, on a représenté la carte de l'endommagement à la fin du calcul pour $\chi = 1$; sur la figure 6.4-1, on montre la réponse force-déplacement obtenu pour deux valeurs de χ (1 et 0.9). On reconnaît bien la courbe du fluage tertiaire, avec la rupture finale de l'échantillon.

Code_Aster		Version default
Titre : Relation de comportement BETON_UMLV_FP pour le flu[]	Date : 31/10/2011	Page : 17/20
Responsable : Sylvie MICHEL-PONNELLE	Clé : R7.01.06	Révision : 7598

On montre ici que, en traction, le coefficient de couplage affecte surtout le temps de la rupture.

Figure 6.4-1: réponse en traction sur un barreau pour deux valeurs du coefficient de couplage.

7 Description des variables internes

Le tableau suivant donne la correspondance entre le numéro des variables internes accessibles par *Code_Aster* et leur description :

Numéro de Description la variable

Manuel de référence

Fascicule r7.01 : Modélisations pour le Génie Civil et les géomatériaux

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE

Date : 31/10/2011 Page : 18/20 Clé : R7.01.06 Révision : 7598

1	Déformation sphérique réversible
2	Déformation sphérique irréversible
3	Déformation déviatorique réversible, composante 11
4	Déformation déviatorique irréversible, composante 11
5	Déformation déviatorique réversible, composante 22
6	Déformation déviatorique irréversible, composante 22
7	Déformation déviatorique réversible, composante 33
8	Déformation déviatorique irréversible, composante 33
9	Retrait de dessiccation, composante 11
10	Retrait de dessiccation, composante 22
11	Retrait de dessiccation, composante 33
12	Déformation déviatorique réversible, composante 12
13	Déformation déviatorique irréversible, composante 12
14	Déformation déviatorique réversible, composante 13
15	Déformation déviatorique irréversible, composante 13
16	Déformation déviatorique réversible, composante 23
17	Déformation déviatorique irréversible, composante 23
18	Retrait de dessiccation, composante 12
19	Retrait de dessiccation, composante 13
	Potroit de dessignation, composante 22

20 Retrait de dessiccation, composante 23

8 Notations

 $\underline{\mathcal{E}}$ tenseur des déformations totales

 ε^{f} tenseur des déformations de fluage propre

 $\boldsymbol{\varepsilon}^{^{e}}$ tenseur des déformations élastiques

 $arepsilon^{fs} 1$ partie sphérique du tenseur des déformations de fluage propre

 ε_r^{fs} partie sphérique réversible du tenseur des déformations de fluage propre

 \mathcal{E}_{i}^{fs} partie sphérique irréversible du tenseur des déformations de fluage propre

 ε^{fd} partie déviatorique du tenseur des déformations de fluage propre

 $\mathcal{E}_{=r}^{fd}$ partie déviatorique réversible du tenseur des déformations de fluage propre (contribution de l'eau absorbée)

 $\mathcal{E}_{=i}^{fd}$ partie déviatorique irréversible du tenseur des déformations de fluage propre (contribution de l'eau libre)

 $\underline{\sigma}$ tenseur des contraintes totales

 $\sigma^s 1$ partie sphérique du tenseur des contraintes

 σ^{d} partie déviatorique du tenseur des contraintes

h humidité relative interne

 ${\it K}\,$ module élastique de rigidité à la dilatation

 k_r^s rigidité apparente associée au squelette formé par des blocs d'hydrates à l'échelle mésoscopique

 k_i^s rigidité apparente associée intrinsèquement aux hydrates à l'échelle microscopique

Manuel de référence

Date : 31/10/2011 Page : 19/20 Clé : R7.01.06 Révision : 7598

 k_r^d rigidité associée à la capacité de l'eau adsorbée à transmettre des charges (*load bearing water*)

 μ module de cisaillement élastique

 η_i^s viscosité apparente associée au mécanisme de diffusion interlamellaire

 η_r^s viscosité apparente associée au mécanisme de diffusion au sein de la porosité capillaire

 η_i^d viscosité de l'eau libre.

 η_r^d viscosité associée à l'eau adsorbée par les feuillets d'hydrates

 $x, \underline{x}, \underline{x}$ désignent respectivement un scalaire, un vecteur et un tenseur d'ordre 2.

 $x_n, x_{n+1}, \Delta x_n$ désignent respectivement la valeur de la quantité x au temps t_n , au temps t_{n+1} et la variation de x pendant l'intervalle $[t_n; t_{n+1}]$.

Titre : Relation de comportement BETON_UMLV_FP pour le flu[...] Responsable : Sylvie MICHEL-PONNELLE Date : 31/10/2011 Page : 20/20 Clé : R7.01.06 Révision : 7598

9 Bibliographie

- BENBOUDJEMA F. : Modélisation des déformations différées du béton sous sollicitations biaxiales. Application aux bâtiments réacteurs de centrales nucléaires, Mémoire de D.E.A. Matériaux Avancés – Ingénierie des Structures et des Enveloppes, 38 p. (+ annexes) (1999).
- BENBOUDJEMA F., MEFTAH F., HEINFLING G., LE PAPE Y. : Etude numérique et analytique de la partie sphérique du modèle de fluage propre UMLV pour le béton, note technique HT-25/02/040/A, 56 p (2002).
- BENBOUDJEMA F., MEFTAH F., TORRENTI J.M., LE PAPE Y. : Algorithme du modèle de fluage propre et de dessiccation UMLV couplé à un modèle élastique, note technique HT-25/02/050/A, 68 p (2002).
- 4) GRANGER L. : Comportement différée du béton dans les enceintes de centrale nucléaire : analyse et modélisation, Thèse de Doctorat de l'ENPC (1995).
- 5) RAZAKANAIVO A. : Relation de comportement de Granger pour le fluage propre du béton, Documentation *Code_Aster* [R7.01.01], 16 p (2001).

10 Fonctionnalités et vérification

Ce document concerne la loi de comportement BETON_UMLV_FP (mot clé COMP_INCR de STAT NON LINE) et son matériau associé BETON UMLV FP (commande DEFI MATERIAU).

Cette loi de comportement est vérifiée par les cas tests suivants :

SSNV163	Calcul de fluage propre	[V6.04.163]
SSNV174	Prise en compte du retrait dans le modèle BETON_UMLV_FP	Non documenté
SSNV180	Prise en compte de la dilatation thermique et du fluage de dessiccation dans le modèle BETON_UMLV_FP	[V6.04.180]
SSNV181	Vérification de la bonne prise en compte du cisaillement dans le modèle BETON_UMLV_FP	[V6.04.181]

Et par les cas tests suivants pour les cas de couplage :

Loi couplée			
ENDO_ISOT_BETON	SSLA103f	Calcul du retrait de dessiccation et du retrait endogène sur un cylindre	[V3.06.103]
ENDO_ISOT_BETON MAZARS	SSNV169	Couplage fluage – endommagement	[V6.04.169]

11 Description des versions du document

Version Aster	Auteur(s) ou contributeur(s), organisme	Description des modifications
7.1	Y. Le Pape EDF/R&D/MMC	Texte initial
9.4	S.Michel-Ponnelle EDF/R&D/AMA M. Bottoni Univ. de Grenoble	Ajout du couplage UMLV – MAZARS
10 4	A.Foucault	Modifications équations §4 - impact fiche anomalie 12519

Manuel de référence