

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 1/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

Réponse sismique par analyse transitoire

Résumé

Les méthodes les plus fréquemment utilisées pour l'analyse sismique des structures sont les méthodes spectrales et les méthodes transitoires.

Les méthodes transitoires (directe linéaire ou non, par synthèse modale) permettent de calculer la réponse de structures sous l'effet de séismes imposés : excitation unique (identique en chacun des points d'ancrage de la structure) ou multiple et de prendre en compte leur éventuel comportement non linéaire.

En ce qui concerne les méthodes spectrales, on calcule la réponse maximale, pour chaque mode de vibration, de chaque point d'ancrage. La réponse maximale de l'ensemble de la structure est alors déterminée par combinaison des réponses maximales des modes. Ce type d'analyse est explicité dans la documentation de référence [R4.05.03].

Titre : Réponse sismique par analyse transitoire

Date: 25/04/2014 Page: 2/20 Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

Table des matières

1 Comportement sismique d'une structure.	3
1.1 Définitions.	3
2 Réponse sismique d'un système à un degré de liberté	3
3 Réponse sismique d'un système à plusieurs degrés de liberté	4
3.1 Équations du mouvement dans le repère absolu	4
3.2 Équations du mouvement dans le repère relatif	6
3.2.1 Décomposition du mouvement absolu	6
3.2.2 Excitation simple ou multiple	7
3.2.3 Modélisation de l'amortissement	8
3.2.4 Équation fondamentale de la dynamique	9
3.3 Calcul du chargement sismique.	9
3.4 Chargement de type onde incidente	10
4 Réponse sismique transitoire par synthèse modale	11
4.1 Description de la méthode	11
4.2 Choix de la base modale	11
4.3 Calcul de la réponse dynamique de la structure étudiée par synthèse modale	12
4.4 Prise en compte des modes négligés par correction statique	12
4.5 Prise en compte du caractère multi-supporté d'une structure	13
4.6 Post-traitements.	14
5 Réponse sismique transitoire directe	15
5.1 Prise en compte d'un amortissement équivalent à l'amortissement modal	15
5.2 Prise en compte d'une sollicitation multi-appuis avec restitutions des champs relatifs	et absolus
	15
6 Interaction sol-structure	16
6.1 Impédance d'une fondation	16
6.2 Prise en compte d'un amortissement modal calculé selon la règle du RCC-G	17
6.3 Répartition des raideurs et amortissement de sol	18
6.4 Prise en compte d'une frontière absorbante	19
7 Bibliographie	20
8 Description des versions du document.	20

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 3/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

1 Comportement sismique d'une structure

1.1 Définitions

L'analyse du comportement sismique d'une structure consiste à étudier sa réponse à un mouvement imposé : une accélération, en ses différents appuis. L'accélération imposée est un signal temporel $\chi(t)$ appelé accélérogramme (cf. [Figure 1.1-a]).

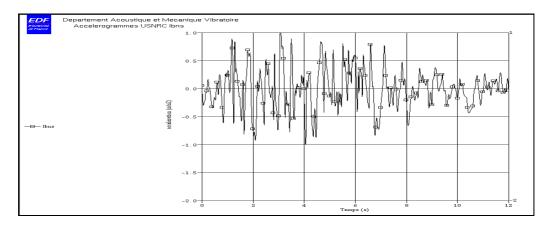


Figure 1.1-a: Accélérogramme LBNS

Le mouvement sismique considéré dans le calcul est soit un accélérogramme réel connu et lu par l'opérateur LIRE_FONCTION [U4.32.02] soit un accélérogramme synthétique calculé directement dans le code, par exemple avec la procédure FORMULE [U4.31.05].

2 Réponse sismique d'un système à un degré de liberté

Soit un oscillateur simple constitué d'une masse m reliée à un point fixe par un ressort k et un amortisseur c pouvant se déplacer dans une seule direction x (cf. [Figure 2-a]). Cet oscillateur à un degré de liberté est soumis à un accélérogramme y(t) horizontal en son support (point A).

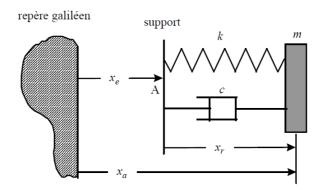


Figure 2-a: oscillateur simple soumis à une sollicitation sismique

Titre : Réponse sismique par analyse transitoire

Date: 25/04/2014 Page: 4/20 Responsable: François VOLDOIRE Clé: R4.05.01 Révision: 12281

Les déplacements de l'oscillateur sont mesurés ou calculés, soit dans un repère relatif lié au point A: déplacement relatif x_r , soit dans un repère absolu (R_a) : déplacement absolu x_a . Le déplacement absolu x_a se décompose en un déplacement d'entraı̂nement uniforme en translation x_e et en un déplacement relatif x_r :

$$x_a = x_r + x_e$$
 éq 2-1

On en déduit par dérivation la relation entre les accélérations :

$$\ddot{x}_a = \ddot{x}_r + \gamma(t)$$
 avec $\gamma(t) = \ddot{x}_e$ éq 2-2

La masse est soumise à une force horizontale de rappel qui est proportionnelle au déplacement relatif : F_r =-k. x_r et à une force horizontale d'amortissement supposée proportionnelle à la vitesse relative : $F_{\nu} = -c \cdot \dot{x}_{r}$.

L'équation du mouvement de la masse s'écrit alors : $-k \cdot x_r - c \cdot \dot{x}_r = m \cdot \ddot{x}_a$. Soit, compte tenu des équations [éq 2-1] et [éq 2-2] :

$$m.\ddot{x}_{r} + c.\dot{x}_{r} + k.x_{r} = -m.\gamma(t) = p(t)$$
 éq 2-3

Remarque:

L'étude de la réponse sismique d'un oscillateur à un degré de liberté dans le repère relatif consiste donc en l'étude de la réponse d'un oscillateur à une force p(t) de forme quelconque. La solution de l'équation de mouvement [éq 2-3] est alors fournie par l'intégrale de Duhamel :

$$x_{r} = \frac{1}{m \cdot \omega_{D}} \int_{0}^{t} p(\tau) \cdot e^{-\xi \cdot \omega \cdot (t-\tau)} \cdot \sin[\omega_{D}(t-\tau)] \cdot d\tau$$

$$p(t) = m \cdot \gamma(t)$$

$$\omega = \sqrt{\frac{k}{m}}, \quad \xi = \frac{c}{2 \cdot m \cdot \omega} \text{ et } \omega_D = \omega \cdot \sqrt{1 - \xi^2}$$

Réponse sismique d'un système à plusieurs degrés de 3 liberté

3.1 Equations du mouvement dans le repère absolu

L'équilibre d'un système mécanique consiste à écrire, quelque soit l'instant de calcul considéré, que la somme des forces internes, d'inerties et d'amortissement est égale aux forces extérieures imposées sur ce dit système : $\mathbf{F}_{iner} + \mathbf{F}_{amo} + \mathbf{F}_{inf} = \mathbf{F}_{ext}$.

Dans le cas d'un comportement linéaire, su le système est représenté par un modèle d'éléments finis ou d'éléments discrets, on a (après discrétisation) :

Titre : Réponse sismique par analyse transitoire Responsable: François VOLDOIRE

Date: 25/04/2014 Page: 5/20 Clé: R4.05.01 Révision: 12281

$$\begin{cases} \mathbf{F}_{iner} = \mathbf{M} \ddot{\mathbf{X}}_{a} \\ \mathbf{F}_{int} = \mathbf{K} \mathbf{X}_{a} \end{cases}$$

- X_a est le vecteur des déplacements nodaux de la structure discrétisée, dans le repère absolu ;
- M est la matrice masse de la structure :
- K est la matrice raideur de la structure ;
- $\mathbf{F}_{\text{ext}} = \mathbf{F}_{\text{e}} \mathbf{F}_{\text{c}}$ est le vecteur des forces imposées sur la structure étudiée, \mathbf{F}_{c} celui des éventuelles forces de choc (cf. [R5.06.03]).

Pour simplifier la présentation, on considère que la structure est uniquement sollicitée par des déplacements imposés au niveau de ses différents supports. Ainsi, $\mathbf{F}_{_{\mathbf{p}}} = \mathbf{0}$.

Dans le but de simplifier la présentation, on sépare généralement les degrés de liberté en deux, en fonction de leur type :

- •les degrés de liberté de structure non soumis à un mouvement imposé également appelés degrés de liberté actifs - ce sont les inconnues du problème ;
- •les degrés de liberté de structure soumis à un mouvement imposé également appelés DDL IMPO - ce sont les conditions aux limites en déplacement du problème (conditions limites de Dirichlet).

Sur les bords de la structure où les déplacements X_s sont imposés, on a : $BX_a = X_s$. B est la matrice de passage de tous les degrés de liberté de la structure aux degrés de liberté de structure soumis à un mouvement imposé.

L'équilibre du système s'écrit alors, quelque soit V appartenant à l'espace des déplacements cinématiquement admissible c'est à dire, quelque soit \mathbf{v} tel que $\mathbf{B}\mathbf{v} = 0$:

$$\begin{cases} \langle \mathbf{M}\ddot{\mathbf{X}}_{a} + \mathbf{F}_{\mathbf{amo}} + \mathbf{K}\mathbf{X}_{\mathbf{a}} - \mathbf{F}_{\mathbf{ext}}, \mathbf{v} \rangle = 0 \\ \mathbf{B}\mathbf{X}_{\mathbf{a}} = \mathbf{X}_{\mathbf{s}} \end{cases}$$

Soit:

$$\begin{cases} \mathbf{M} \ddot{\mathbf{X}}_{a} + \mathbf{F}_{amo} + \mathbf{K} \mathbf{X}_{a} - \mathbf{F}_{ext} = -\mathbf{B}^{T} \cdot \lambda \\ \mathbf{B} \mathbf{X}_{a} = \mathbf{X}_{s} \end{cases}$$
 éq 3.1-1

 $\mathbf{F}_{s} = -\mathbf{B}^{T} \cdot \lambda$ est le vecteur des forces de réactions exercées par les appuis sur la structure.

En tenant compte de la partition des degrés de liberté, le vecteur des déplacements dans le repère

absolu s'écrit :
$$\mathbf{X_a} = \begin{bmatrix} \mathbf{X_a} \\ \mathbf{X_s} \end{bmatrix}$$
. Les opérateurs décrivant la structure deviennent : $\mathbf{M} = \begin{bmatrix} \mathbf{m} & \mathbf{m}_{xs} \\ \mathbf{m}_{sx} & \mathbf{m}_{ss} \end{bmatrix}$, $\mathbf{K} = \begin{bmatrix} \mathbf{k} & \mathbf{k}_{xs} \\ \mathbf{k}_{sx} & \mathbf{k}_{ss} \end{bmatrix}$ avec $\mathbf{m}_{sx} = \mathbf{m}_{xs}^T$ et $\mathbf{k}_{sx} = \mathbf{k}_{xs}^T$ et le vecteur des forces extérieures appliquées à la

$$\mathbf{K} = \begin{bmatrix} \mathbf{k} & \mathbf{k}_{xs} \\ \mathbf{k}_{sx} & \mathbf{k}_{ss} \end{bmatrix} \text{ avec } \mathbf{m}_{sx} = \mathbf{m}_{xs}^{T} \text{ et } \mathbf{k}_{sx} = \mathbf{k}_{xs}^{T} \text{ et le vecteur des forces extérieures appliquées à la}$$

structure s'écrit :
$$\mathbf{F}_{\text{ext}} = \begin{bmatrix} -\mathbf{f}_{\mathbf{c}} \\ 0 \end{bmatrix}$$
 .

L'équation fondamentale de la dynamique dans le référentiel absolu s'écrit alors, en tenant compte de la partition des degrés de liberté :

Révision: 12281

Date: 25/04/2014 Page: 6/20

Clé: R4.05.01

Titre : Réponse sismique par analyse transitoire

Responsable : François VOLDOIRE

$$\begin{bmatrix} \mathbf{m} & \mathbf{m}_{xs} \\ \mathbf{m}_{sx} & \mathbf{m}_{ss} \end{bmatrix} \cdot \begin{bmatrix} \ddot{\mathbf{x}}_{a} \\ \ddot{\mathbf{x}}_{s} \end{bmatrix} + \mathbf{F}_{amo} + \begin{bmatrix} \mathbf{k} & \mathbf{k}_{xs} \\ \mathbf{k}_{sx} & \mathbf{k}_{ss} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x}_{a} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} -\mathbf{f}_{c} \\ \mathbf{f}_{a} \end{bmatrix}$$

Soit, en ne considérant que les degrés de liberté actifs :

$$\mathbf{m}\ddot{\mathbf{x}}_a + \mathbf{F}_{amo} + \mathbf{k}\mathbf{x}_a = -\mathbf{f}_c - \mathbf{m}_{xs}\ddot{\mathbf{x}}_s - \mathbf{k}_{xs}\mathbf{x}_s$$

Cette approche nécessite la connaissance des déplacements et vitesses absolus associés à l'accélérogramme $\gamma(t)$ or les enregistreurs mesurent soit des accélérations soit des vitesses. On peut remonter aux déplacements par simple ou double intégration avec la commande CALC_FONCTION [U4.32.04]. Cependant, les incertitudes de mesure donnent des dérives qu'il convient de corriger : les déplacements sont donc moins bien connus que les vitesses et accélérations. On gardera en mémoire les ordres de grandeur des amplitudes maximales suivants :

- ullet quelques dixièmes de « g » pour les accélérations ;
- •quelques dizaines de *cm*/*s* pour les vitesses ;
- quelques dizaines de cm pour les déplacements.

On s'assurera également qu'en fin de séisme les vitesse et déplacement sont réalistes c'est-à-dire au plus de quelques dizaines de cm pour le déplacement, nulle pour la vitesse.

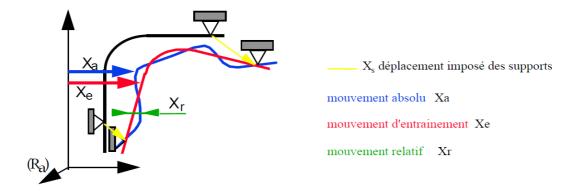
3.2 Équations du mouvement dans le repère relatif

3.2.1 Décomposition du mouvement absolu

Les sollicitations subies par une structure lors d'un séisme sont classées en deux types dans les règles de construction (ASME, RCC-M) :

- •les contraintes induites par le mouvement relatif de la structure par rapport à sa déformée statique ou **contraintes primaires**. Ces sollicitations sont dues aux effets inertiel du séisme ;
- •les contraintes induites par les déplacements différentiels des ancrages ou **contraintes** secondaires.

Le plus souvent, on décompose donc l'étude des structures en l'étude de la déformée statique due aux mouvements des supports (c'est le mouvement d'entraînement) et en l'étude des vibrations induites par les accélérations des supports autour de cette déformée (c'est le mouvement relatif).



Le déplacement absolu de tout point $\,M\,$ de la structure, non soumis à un déplacement imposé, est égal à la somme du déplacement relatif et du déplacement d'entraı̂nement de ce point :

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 7/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

$$X_a(M) = X_r(M) + X_r(M)$$
 éq 3.2.1-1

Soit:

- ullet $\mathbf{X}_{\mathbf{a}}$, le vecteur des déplacements dans le référentiel absolu ;
- ${\bf X_r}$, le vecteur des déplacements relatifs définis comme le vecteur des déplacements de la structure par rapport à la déformée qu'elle aurait sous l'action statique des déplacements imposés au niveau des supports. ${\bf X_r}$ est donc nul aux points d'ancrage : ${\bf B}{\bf X_r}{=}0$;
- ullet $X_{
 m e}$, le vecteur des déplacements d'entraı̂nement définis comme les déplacements de la

structure sollicitée statiquement par les déplacements imposés des supports $\begin{vmatrix} \mathbf{B} \mathbf{X}_{e} = \mathbf{X}_{s} \\ \mathbf{K} \mathbf{X}_{e} = -\mathbf{B}^{T} . \lambda_{e} \end{vmatrix}$

avec
$$\lambda = \lambda_r + \lambda_e \Leftrightarrow X_e = \Psi \cdot X_s$$
.

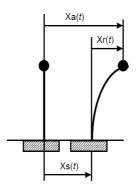
ullet est la matrice des modes statiques. Les modes statiques représentent, en l'absence de forces extérieures, la réponse de la structure à un déplacement unitaire imposé à chaque degré de liberté de liaison (les autres étant bloqués).

3.2.2 Excitation simple ou multiple

Pour expliciter plus en détail l'approche en mouvement relatif, et plus particulièrement le calcul des composantes d'entraînement, il est nécessaire d'introduire la notion d'excitation simple ou multiple.

3.2.2.1 Excitation simple

On considère que le mouvement sismique imposé est un mouvement de corps solide. On dit généralement que la structure est mono-supportée.



Le déplacement absolu de tout point M de la structure, non soumis à un déplacement imposé se décompose donc en un déplacement relatif par rapport à un repère mobile lié au support où est imposé le mouvement sismique et en un déplacement d'entraînement rigide.

Dans ce cas, les modes statiques correspondent aux six modes de corps rigide. Comme la structure est linéaire élastique, on étudie séparément les effets des six composantes du mouvement sismique. Pour chaque direction sismique, on écrit les forces d'inerties induites par le séisme simplement sous la forme suivante :

$$\mathbf{P}(t) = -\mathbf{M} \boldsymbol{\Psi} \cdot \ddot{\mathbf{X}}_{s} = -\boldsymbol{\gamma}(t) \cdot \mathbf{M} \boldsymbol{\Delta}$$

• $\gamma(t)$ est l'accélérogramme du mouvement sismique dans une direction ;

Titre: Réponse sismique par analyse transitoire

Date: 25/04/2014 Page: 8/20 Responsable: François VOLDOIRE Clé: R4.05.01 Révision: 12281

- Δ est le mode de corps solide et unitaire dans cette direction ;
- •Les sismographes ne mesurent que des signaux de translation. Considérer que la structure étudiée est mono supportée revient à supposer que tous ses points d'appuis subissent la même translation. Dans ce cas, les composantes de $|\Delta|$ valent 1 pour les degrés de liberté qui correspondent à des déplacement dans la direction sismique considérée et 0 pour les degrés de liberté qui correspondent à des déplacement dans des directions sismiques perpendiculaires à celle considérée ou à des rotations.
- •Cependant, vu la taille des modèles, l'analyse sismique complète d'un équipement s'effectue généralement en plusieurs étapes. L'analyse sismique détaillée de l'équipement considéré utilise alors comme excitations, les accélérations calculées lors de la première étape. Elles se composent des six accélérogrammes de translation et de rotation. On calcule donc les trois modes correspondant aux déplacements imposés de translation et les trois modes correspondant aux déplacements imposés de rotation. Si le mouvement sismique est une rotation Ω imposée, en un point M, $\Delta_{\scriptscriptstyle M} = \vec{OM} \wedge \vec{\Omega}$ pour les degrés de liberté qui correspondent à des déplacement de translation et Ω pour les degrés de liberté qui correspondent à rotations.

3.2.2.2 Excitation multiple

On ne peut pas toujours considérer que :

- •les accélérations subies par l'ensemble des points d'ancrage de la structure étudiée sont identiques et en phase :
- •les supports sont indéformables et animés d'un même mouvement de corps rigide.

Dans ce cas, on dit que **la structure est multi - supportée**. Les modes statiques $\Psi = \begin{vmatrix} \Psi \\ \mathbf{Id} \end{vmatrix}$

correspondent alors aux $6.nb_{supports}$ modes statiques (ou $3.nb_{supports}$ modes) où $nb_{supports}$ est le nombre d'accélérogrammes différents subis simultanément par la structure. Ils sont calculés par l'opérateur mode statique [U4.52.14] avec l'option del impo. Ils sont solution de l'équation suivante:

$$\begin{cases}
\Psi \mathbf{X}_{\mathbf{e}} = \mathbf{X}_{\mathbf{s}} \\
\mathbf{K} \mathbf{X}_{\mathbf{e}} = \mathbf{B}^{\mathbf{T}} \cdot \mathbf{\lambda}_{\mathbf{e}}
\end{cases} \text{ soit } \begin{bmatrix}
\mathbf{k} & \mathbf{k}_{xs} \\
\mathbf{k}_{ss} & \mathbf{k}_{ss}
\end{bmatrix} \cdot \begin{bmatrix}
\Psi \\
\mathbf{Id}
\end{bmatrix} = \begin{bmatrix}
0 \\
\mathbf{f}_{\mathbf{a}\,\mathbf{e}}
\end{bmatrix}$$
éq 3.2.2.2-1

Soit, en ne considérant que les degrés de liberté actifs : $\mathbf{k} \cdot \mathbf{\Psi} + \mathbf{k}_{xx} \cdot \mathbf{Id} = 0$.

Les forces d'inerties induites par le séisme s'écrivent alors simplement :

$$\mathbf{P}(t) = -\sum_{m=1}^{\text{nb_supports}} \mathbf{M} \cdot \mathbf{\Psi}_{\mathbf{m}} \cdot \ddot{\mathbf{X}}_{s_m}(t)$$

Modélisation de l'amortissement 3.2.3

On considère que l'amortissement dissipé par la structure est de type visqueux c'est-à-dire que la force d'amortissement est proportionnelle à la vitesse relative de la structure :

 $\mathbf{F}_{amo} = \mathbf{C} \mathbf{X}_r$ où \mathbf{C} est la matrice d'amortissement de la structure.

Cela revient à négliger l'effet de la vitesse imposée. En effet, on peut écrire plus généralement :

$$\mathbf{F}_{\mathbf{amo}} = \mathbf{C} \dot{\mathbf{X}}_{a} = \mathbf{C} \dot{\mathbf{X}}_{r} + \mathbf{C} \boldsymbol{\Psi} \cdot \dot{\mathbf{X}}_{s} .$$

Dans le cas d'une excitation uniforme à la base (cas du mono-appui), l'amortissement n'intervient que sur les déplacements relatifs (les forces d'amortissement sont nulles pour un déplacement rigide). Titre : Réponse sismique par analyse transitoire Responsable : François VOLDOIRE

Date : 25/04/2014 Page : 9/20 Clé : R4.05.01 Révision : 12281

Dans le cas d'une excitation multiple où la solution statique n'est plus un déplacement rigide, considérer que la force d'amortissement est proportionnelle à la vitesse relative de la structure est une hypothèse simplificatrice.

3.2.4 Équation fondamentale de la dynamique

L'équation fondamentale de la dynamique [éq 3.1-1], dans le **repère relatif**, s'écrit alors, compte tenu des équations [éq 3.2.1-1] et [éq 3.2.2.2-1] :

$$M\ddot{\mathbf{X}}_r + \mathbf{C}\dot{\mathbf{X}}_r + \mathbf{K}\mathbf{X}_r = -\mathbf{M}\cdot\mathbf{\Psi}\cdot\ddot{\mathbf{X}}_s + \mathbf{F}_{ext} - \mathbf{B}^T\cdot\lambda_r$$
 éq 3.2.4-1

Soit, en partitionnant les degrés de liberté :

$$\begin{bmatrix} m & m_{xs} \\ m_{sx} & m_{ss} \end{bmatrix} \cdot \begin{bmatrix} \ddot{x}_r \\ 0 \end{bmatrix} + \begin{bmatrix} c & c_{xs} \\ c_{sx} & c_{ss} \end{bmatrix} \cdot \begin{bmatrix} \dot{x}_r \\ 0 \end{bmatrix} + \begin{bmatrix} k & k_{xs} \\ k_{sx} & k_{ss} \end{bmatrix} \cdot \begin{bmatrix} x_r \\ 0 \end{bmatrix} = \begin{bmatrix} -f_c \\ f_{a_r} \end{bmatrix} - \begin{bmatrix} (m \cdot Y + m_{xs} \cdot \mathbf{Id}) \ddot{x}_s \\ (m_{sx} \cdot Y + m_{ss} \cdot \mathbf{Id}) \ddot{x}_s \end{bmatrix}$$

$$\text{avec } \mathbf{c}_{sx} = \mathbf{c}_{rs}^{\mathsf{T}}$$

Soit, en ne considérant que les degrés de liberté actifs :

$$\mathbf{m} \cdot \ddot{\mathbf{x}}_r + \mathbf{c} \cdot \dot{\mathbf{x}}_r + \mathbf{k} \cdot \mathbf{x}_r = -\mathbf{f}_c - \left(\mathbf{m} \cdot \mathbf{\Psi} + \mathbf{m}_{xs} \cdot \mathbf{Id} \right) \ddot{\mathbf{x}}_s$$

Les principaux avantages de l'approche en déplacement relatif par rapport à celle en déplacement absolu sont les suivants :

- •il n'est pas nécessaire d'intégrer l'accélérogramme $\gamma(t)$;
- •les déplacements relatifs obtenus permettent de déterminer directement les contraintes primaires induites par le séisme.

3.3 Calcul du chargement sismique

Le chargement sismique (cf. [§3.2]) $-\mathbf{M}.\boldsymbol{\psi}$ soit $-\left(\mathbf{m}.\boldsymbol{\Psi}+\mathbf{m}_{xs}.\mathbf{Id}\right)\ddot{\mathbf{x}}_s$ sur les degrés de liberté actifs est construit par l'opérateur <code>CALC_CHAR_SEISME</code> [U4.63.01]. Il est utilisable directement lors d'une analyse transitoire directe avec <code>DYNA_LINE_TRAN</code> [U4.53.02] ou d'une analyse transitoire par synthèse modale avec <code>DYNA_NODAL</code> [U4.53.21]. En revanche, lors d'une analyse transitoire directe non linéaire avec <code>DYNA_NON_LINE</code> [U4.53.01], il faut le transformer en un concept de type <code>charge</code>. Ceci est réalisé à partir de l'opérateur <code>AFFE_CHAR_MECA</code> [U4.44.01] de la façon suivante :

Dans le cas d'une structure mono supportée, il suffit d'indiguer la direction du séisme :

Dans le cas d'une structure multi-supportée, il faut au préalable avoir calculé les modes statiques. On calcule autant de chargements sismiques que de supports qui subissent une accélération différente.

Titre : Réponse sismique par analyse transitoire Responsable : François VOLDOIRE Date : 25/04/2014 Page : 10/20 Clé : R4.05.01 Révision : 12281

3.4 Chargement de type onde incidente

Il est également possible d'imposer un chargement sismique par onde plane par l'intermédiaire de la commande AFFE_CHAR_MECA et le mot clé facteur ONDE_PLANE. Cela correspond aux chargements classiquement rencontrés lors des calculs d'interaction sol-structure par les équations intégrales.

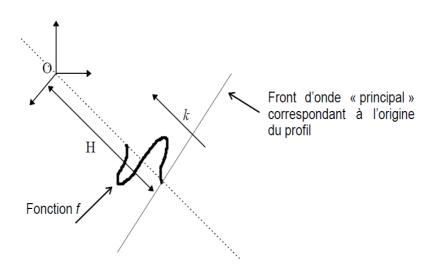
En harmonique, une onde plane élastique est caractérisée par sa direction, sa pulsation et son type (onde P pour les ondes de compression, ondes SV ou SH pour les ondes de cisaillement). En transitoire, la donnée de la pulsation, correspondant à une onde stationnaire en temps, doit être remplacée par la donnée d'un profil de déplacement dont on va prendre en compte la propagation au cours du temps dans la direction de l'onde.

Plus précisément, on caractérise :

- •une onde P par la fonction $\mathbf{u}(x,t) = f(k.x C_p t)\mathbf{k}$
- •une onde S par la fonction $\mathbf{u}(x,t) = f(k.x C_s t) \wedge \mathbf{k}$

Avec:

- k , vecteur unitaire de direction
- f représente alors le profil de l'onde donné selon la direction ${\bf k}$.



 H_0 est la distance du front d'onde principal à l'origine O, portée par le vecteur directeur de l'onde à l'instant initial du calcul, H la distance du front d'onde principal à l'origine O, à un instant quelconque.

Remarque:

Ce type de charge est disponible dans un calcul transitoire direct linéaire DYNA_LINE_TRAN ou non DYNA_NON_LINE.

L'utilisation de ce type de chargement sera détaillé dans une note spécifique.

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 11/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

4 Réponse sismique transitoire par synthèse modale

4.1 Description de la méthode

La méthode de recombinaison modale consiste à décomposer le mouvement relatif de la structure sur la base des modes propres. Comme celui-ci est nul au niveau des supports, on projette l'équation de la dynamique sur la base des modes propres bloqués (modes propres obtenus en bloquant tous les degrés de liberté de liaison).

$$X_r = \Phi \cdot Q$$

- $oldsymbol{\phi}$ est la matrice des modes propres bloqués ;
- Q le vecteur des inconnues généralisées sur la base des modes propres bloqués.

Les modes propres bloqués sont solution de :

$$\left(\mathbf{K} - \Omega_i^2 \cdot \mathbf{M}\right) \boldsymbol{\Phi}_i = \begin{bmatrix} 0 \\ \mathbf{F}_i \end{bmatrix}$$
 où \mathbf{F}_i sont les réactions modales aux points d'appuis.

L'équation du mouvement projetée sur la base des modes dynamiques s'écrit alors :

$$\mathbf{M}_{\mathbf{G}}\ddot{\mathbf{Q}}(t) + \mathbf{C}_{\mathbf{G}}\dot{\mathbf{Q}}(t) + \mathbf{K}_{\mathbf{G}}\mathbf{Q}(t) = -\boldsymbol{\Phi}^{\mathbf{T}}.\mathbf{M}.\boldsymbol{\Psi}.\ddot{\mathbf{X}}_{s} + \boldsymbol{\Phi}^{\mathbf{T}}.\mathbf{F}_{ext} - \boldsymbol{\Phi}^{\mathbf{T}}.\mathbf{B}^{\mathbf{T}}.\boldsymbol{\lambda}_{r}$$

où M_G , C_G et K_G sont les matrices de masse, d'amortissement et raideur généralisées. Pour simplifier, on considère qu'elles sont diagonales. La matrice d'amortissement généralisée C_G aussi car on suppose que l'hypothèse de Basile est vérifiée (la matrice d'amortissement est une combinaison linéaire des matrices masse et raideur).

Soit, en ne considérant que les degrés de liberté actifs :

$$\mathbf{m_{G}} \cdot \ddot{\mathbf{q}}(t) + \mathbf{c_{G}} \cdot \dot{\mathbf{q}}(t) + \mathbf{k_{G}} \cdot \mathbf{q}(t) = -\boldsymbol{\Phi}^{T} \cdot \mathbf{f_{c}} - \boldsymbol{\Phi}^{T} \cdot (\mathbf{m} \cdot \boldsymbol{\Psi} + \mathbf{m_{xs}} \cdot \mathbf{Id}) \ddot{\mathbf{x}}_{s}$$

En l'absence de choc, on est donc conduit à résoudre un ensemble d'équations découplées (il y en a autant que de modes propres).

Remarque:

Il est possible de calculer une base modale avec des matrices non diagonales. Il suffit de le préciser lors de la construction de la numérotation généralisée par le mot clé STOCKAGE = 'PLEIN' de la commande NUME_DDL_GENE [U4.65.03].

4.2 Choix de la base modale

Pour l'analyse sismique d'une structure linéaire, il faudrait en principe retenir tous les modes dont les fréquences propres sont inférieures à la fréquence de coupure (généralement de l'ordre de $33\ Hz$). Dans la pratique, on se contente souvent de ne conserver dans la base modale que les modes qui contribuent de façon significative à la réponse. On conserve alors uniquement les modes dont la masse effective unitaire dans une direction est supérieure à 1% et on s'assure également que, pour l'ensemble de ces modes retenus, la masse effective unitaire cumulée dans chaque direction est peu différente de la masse totale de la structure (supérieure à 90%). Le critère de cumul des masses modales effectives est atteint en enchaînant les opérateurs suivants :

Calcul de la masse totale de la structure : POST ELEM [U4.81.22]

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 12/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

```
masse in = POST ELEM (MASS INER = F (TOUT = 'OUI'))
```

- •Calcul des modes propres dynamiques bloqués: ils sont calculés dans l'opérateur MODE_ITER_SIMULT [U4.52.03] ou dans MODE_ITER_INV [U4.52.04] selon la méthode choisie. mode = MODE ITER SIMULT(); ou mode = MODE ITER INV();
- Normalisation des modes par rapport à la masse généralisée : NORM MODE [U4.52.11]

```
NORM MODE (MODE = mode, NORME ='MASSE GENE', MASSE INER = masse in) ;
```

• Extraction de la base modale des modes dont la masse effective unitaire dépasse un certain seuil (1‰ par exemple) et vérification que les modes extraits représentent au moins 90% de la masse totale : EXTR MODE [U4.52.12]

```
EXTR_MODE(
   FILTRE_MODE(MODE= mode, CRIT_EXTRE= 'MASSE_EFFE_UN', SEUIL =1.e-3)
   IMPRESSION(CUMUL ='OUI');
```

Remarques:

la somme des masses modales effectives vaut en fait la masse totale qui travaille sur la base modale choisie. Autrement dit, cette masse totale travaillante vaut la masse totale moins les contributions en masse qui sont portées par des degrés de liberté encastrés (qui ne travaillent donc pas sur la base modale). Ainsi, par exemple, sur un système à 1 degré de liberté masseressort avec une masse M1 au sommet et une autre masse M2 au niveau du radier, alors la masse travaillante vaudra M1 et la masse totale M1+M2. Par suite, la masse modale effective unitaire pour le seul mode du système vaudra M1/(M1+M2). Le cumul total aura donc la même valeur et, suivant le ratio en M1 et M2, on ne pourra donc pas forcément atteindre 90 % de la masse totale (M1+M2), même en considérant tous les modes (on n'a qu'un seule mode sur cet exemple). En pratique, plus le modèle aux éléments finis sera afin et réaliste, plus l'écart entre la masse travaillante et la masse totale sera faible.

La macro commande MACRO_MODE_MECA [U4.52.02] permet d'enchaîner directement l'ensemble des trois dernières commandes précédentes.

Attention, certaines réponses locales (dans le cas particulier de non linéarités localisées) peuvent être fortement influencées par des modes d'ordre supérieur dont la fréquence est au delà de la fréquence de coupure et dont la masse modale effective est faible (inférieure à 1‰). Le mot clé VERI_CHOC de la commande DYNA_TRAN_MODAL [U4.53.21] permet de vérifier a posteriori que la base modale choisie est suffisante . Si ce n'est pas le cas, on conseille vivement de la compléter.

4.3 Calcul de la réponse dynamique de la structure étudiée par synthèse modale

Après avoir calculé la base des modes propres dynamiques et construit une numérotation généralisée par NUME_DDL_GENE [U4.65.03], on projette ensuite les matrices de masse, d'amortissement et de raideur, sur cette même base avec l'opérateur PROJ_MATR_BASE [U4.63.12], les vecteurs second membre avec PROJ_VECT_BASE [U4.63.13].

Remarque:

La macro commande PROJ_BASE [U4.63.11] permet d'enchaîner directement l'ensemble des trois opérations.

Les matrices et vecteurs ainsi projetés, on calcule la réponse généralisée du système mono ou multi-excité à l'aide de l'opérateur DYNA TRAN MODAL [U4.53.21].

4.4 Prise en compte des modes négligés par correction statique

Lors du calcul de la réponse généralisée d'une structure mono excitée, il est possible de prendre en compte, a posteriori, l'effet statique des modes négligés. Dans ce cas, une fois revenu sur la base physique on corrige la valeur du déplacement relatif calculé (respectivement la vitesse relative et l'accélération relative) par la contribution d'un pseudo-mode. Le pseudo-mode est défini par la

Titre : Réponse sismique par analyse transitoire Responsable : François VOLDOIRE

Date : 25/04/2014 Page : 13/20 Clé : R4.05.01 Révision : 12281

différence entre le mode statique associé au chargement unitaire de type accélération uniforme imposée et la projection sur les modes dynamiques calculés du déplacement (respectivement la vitesse relative et l'accélération relative).

On a alors:

Les fonctions multiplicatives du temps $f_i(t)$ correspondent à l'accélérogramme imposé $\gamma_i(t)$ dans chaque direction i considérée.

La démarche à suivre est la suivante :

- •Calcul du chargement unitaire de type force imposée (accélération uniforme) dans la direction du séisme : AFFE_CHAR_MECA [U4.44.01]. On fera attention à permuter le signe de la direction puisque la force d'inertie sismique est de la forme $P(t) = -M \Psi . \ddot{X}_s$
 - cham no = AFFE CHAR MECA(MODELE=modèle, PESANTEUR=(VALE, DIRECTION)) ;
- •Calcul de la réponse statique linéaire de la structure au précédent cas de charge : MACRO_ELAS_MULT [U4.51.02].

On notera qu'il y a autant de cas de charge que de direction de séisme

- Calcul des dérivées premières et seconde de l'accélérogramme : CALC_FONCTION [U4.32.04]. deri pre et deri sec = CALC FONCTION (OPTION = DERIVE) ;
- Calcul de la réponse généralisée en prenant en compte les modes négligés par correction statique :

• Retour vers la base physique : la correction statique n'est pas implicitement prise en compte. Il faut préciser CORR_STAT='OUI' dans RECU_FONCTION ou REST_GENE_PHYS pour que la correction statique soit prise en compte.

Remarque:

Dans le cas d'une structure multi-excitée, la prise en compte des modes négligés par correction statique n'est pas développée. On post-traite le déplacement absolu dans ce cas.

4.5 Prise en compte du caractère multi-supporté d'une structure

On a vu précédemment (cf. [§3.3]) que pour calculer le chargement sismique dans le cas d'une structure multi-supportée, il faut au préalable avoir calculé les modes statiques. Si on veut pouvoir restituer les grandeurs calculées dans le repère absolu ou si on veut pouvoir prendre en compte des non linéarités localisées, il faut également préciser dans DYNA_TRAN_MODAL que la structure étudiée est multi-excitée. En effet, dans ce dernier cas, on compare à chaque instant, le vecteur des

Titre : Réponse sismique par analyse transitoire Responsable: François VOLDOIRE

Date: 25/04/2014 Page: 14/20 Clé: R4.05.01 Révision: 12281

déplacements absolus de chacun des points de choc considérés, afin de déterminer si il y a choc et de calculer les forces de choc correspondantes.

La démarche à suivre est la suivante :

```
• Calcul des modes statiques : MODE STATIQUE [U4.52.14].
   mode stat = MODE STATIQUE(DDL IMPO = (...));
• Calcul de la réponse généralisée en prenant en compte la composante d'entraînement :
   dyna mod = DYNA TRAN MODAL (MASS GENE = ... , RIGI GENE = ...
                 MODE STAT = mode stat
                  EXCIT = F(MULT APPUI = 'OUI'
                          ACCE = accelero, VITE = vitesse, DEPL = deplace
                          DIRECTION = (...), NOEUD = NO1
                  ...) ;
```

4.6 Post-traitements

Les opérateurs REST GENE PHYS [U4.63.31] ou RECU FONCTION [U4.32.03] peuvent alors restituer dans l'espace physique les évolutions calculées :

- •l'opérateur REST GENE PHYS restitue globalement (le champ complet) les déplacements, vitesses et accélérations;
- •l'opérateur RECU FONCTION restitue localement (évolution temporelle d'un degré de liberté) les déplacements, vitesses et accélérations.

On peut restituer les grandeurs relatives en précisant (MULT APPUI = 'NON') ou les grandeurs absolues par (MULT APPUI = 'OUI').

On obtient alors les déplacements d'entraînement nécessaires au calcul des grandeurs secondaires en soustrayant aux déplacements absolus les déplacements relatifs. Ceci est effectué par la commande CALC FONCTION [U4.32.04] option COMB.

A partir des évolutions précédentes, on peut également extraire les valeurs maximum et RMS et calculer le spectre de réponse d'oscillateur associé. Ceci est effectué par la commande CALC FONCTION options MAX, RMS et SRO.

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 15/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

5 Réponse sismique transitoire directe

L'intégration directe est réalisable soit avec des hypothèses de comportement linéaire : opérateur DYNA_LINE_TRAN [U4.53.02] soit avec des hypothèses de comportement non linéaire : opérateur DYNA_NON_LINE [U4.53.01]. Mise à part la façon de prendre en compte le chargement sismique (cf. [§3.3]), les syntaxes de DYNA NON LINE et DYNA LINE TRAN sont identiques.

5.1 Prise en compte d'un amortissement équivalent à l'amortissement modal

Généralement, l'information la plus précise que l'on ait sur l'amortissement provient des essais de vibration qui permettent de déterminer, pour une fréquence de résonance donnée f_i , la largeur de résonance correspondante et donc l'amortissement réduit ξ_i à cette résonance. Il est donc nécessaire de pouvoir prendre en compte, dans un calcul transitoire direct, un amortissement équivalent à l'amortissement modal.

A partir du développement spectral de la matrice identité :

$$\mathbf{Id} = \sum_{i=1}^{n_{\text{-}} \text{mod } es} \frac{\mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{K}}{\mathbf{X}_{i}^{\mathsf{T}} \mathbf{K} \mathbf{X}_{i}} = \sum_{i=1}^{n_{\text{-}} \text{mod } es} \frac{\mathbf{X}_{i} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{K}}{M_{G.i.} \omega_{i}^{2}}$$

on montre:

ullet qu'on peut développer la matrice d'amortissement de la structure ${f C}$ en série de modes propres :

$$\mathbf{C} = \sum_{i=1}^{n \mod es} a_i \cdot \left(\mathbf{K} \cdot \boldsymbol{\Phi}_i \right) \left(\mathbf{K} \cdot \boldsymbol{\Phi}_i \right)^T$$

• et que, compte tenue de la définition du pourcentage d'amortissement critique :

$$\boldsymbol{\Phi}_{i}^{T}.C.\boldsymbol{\Phi}_{i}=2.\mathbf{M}_{G_{i}}.\omega_{i}.\xi_{i}.a_{i}=2.\frac{\xi_{i}}{K_{G_{i}}.\omega_{i}}$$

Il est donc conseillé à l'utilisateur de spécifier (les syntaxes de DYNA_NON_LINE et DYNA_LINE_TRAN sont identiques), les valeurs des amortissements modaux pour chaque fréquence propre par l'intermédiaire du mot clé facteur AMOR MODAL.

Cela revient à imposer une force d'amortissement proportionnelle à la vitesse relative de la structure :

$$\mathbf{F}_{\mathbf{amo}} = \mathbf{C} \dot{\mathbf{X}}_r \text{ avec } \mathbf{C} = \sum_{i=1}^{n_\text{mod } es} 2 \cdot \frac{\boldsymbol{\xi}_i}{K_{\mathbf{G_i}} \cdot \boldsymbol{\omega}_i} \cdot \left(\mathbf{K} \cdot \boldsymbol{\Phi}_i \right) \left(\mathbf{K} \cdot \boldsymbol{\Phi}_i \right)^T$$

5.2 Prise en compte d'une sollicitation multi-appuis avec restitutions des champs relatifs et absolus

Par défaut, les grandeurs sont calculées dans le repère relatif. Dans DYNA_NON_LINE et DYNA_LINE_TRAN, on utilise une syntaxe identique à celle de DYNA_TRAN_MODAL (présence des mots clés MODE_STAT et MULT_APPUI = 'OUI') pour les calculer dans le repère absolu.

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 16/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

6 Interaction sol-structure

Le comportement sismique d'un bâtiment dépend des caractéristiques du sol sur lequel il est posé puisqu'il dépend du mouvement sismique imposé au sol et du comportement dynamique du bâtiment et de ses fondations. L'interaction sol-structure contribue le plus fréquemment à diminuer la réponse de la structure étudiée.

6.1 Impédance d'une fondation

Soit une fondation rigide superficielle sans masse, soumise à une force harmonique de pulsation ω : $P(t) = P_0 \cdot e^{i w t}$ Elle est donc animée d'un mouvement X(t) de même fréquence. On appelle **impédance de la fondation**, le nombre complexe $K(\omega)$, fonction de la fréquence ω tel que : $K(\omega) = \frac{P(t)}{X(t)}$.

Plusieurs méthodes analytiques ou numériques permettent de calculer l'impédance d'une fondation selon la complexité de la fondation et du sol sur lequel elle est posée ou partiellement enfouie. Parmi les plus fréquemment utilisées, on cite :

- •les méthodes analytiques des ressorts de WOLF ou de DELEUZE où l'on suppose que le radier est circulaire, rigide et posé sur un sol homogène. La fondation doit être superficielle ;
- •la méthode numérique du code CLASSI où l'on suppose que le radier est de forme quelconque, rigide et posé sur un sol éventuellement stratifié. La fondation doit être superficielle ;
- •la méthode numérique du code MISS3D où le radier peut être de forme quelconque, éventuellement déformable et posé sur un sol éventuellement stratifié.

Il est possible de traiter l'interaction sol-fondation par la **méthode fréquentielle de couplage** (prise en compte de la dépendance en fréquence de la matrice d'impédance) en réalisant un calcul couplé MISS3D / Code_Aster. Ce type de calculs n'est pas détaillé dans cette documentation de référence. On présente ici uniquement le cas le plus courant où l'interaction sol-fondation est traitée par la **méthode des ressorts de sol** (on considère que les termes de la matrice d'impédance sont indépendants de la fréquence).

Dans le cas d'une fondation rigide superficielle, l'impédance est calculée au centre de gravité de la surface en contact dans un repère lié aux axes principaux d'inertie de cette surface. Pour chaque fréquence, elle s'exprime sous la forme d'une matrice de dimension (6,6). On ajuste ensuite la valeur de chaque terme en fonction d'un mode propre particulier du bâtiment étudié en base bloquée :

- •fréquence du premier mode de balancement ω_0 pour les raideurs horizontales $\mathit{Kx}\big(\omega_0\big)$, $\mathit{Ky}\big(\omega_0\big)$ et de rotation $\mathit{Krx}\big(\omega_0\big)$, $\mathit{Kry}\big(\omega_0\big)$;
- •fréquence du premier mode de pompage ω_1 pour la raideur verticale $\mathit{Kz}(\omega_1)$ et de torsion $\mathit{Krz}(\omega_1)$.

Titre : Réponse sismique par analyse transitoire Date : 25/04/2014 Page : 17/20
Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

Comme les fréquences propres du bâtiment dépendent des raideurs de sol, le calcul des valeurs globales des six ressorts de sol résulte d'un processus itératif illustré figure [Figure 6.1-a]. Les premières raideurs de sol $Kx(\omega_0), Ky(\omega_0), Kz(\omega_1), Krx(\omega_0), Kry(\omega_0)$ et $Krz(\omega_1)$ sont choisies en fonction des premières fréquences propres de balancement (ω_0) et de pompage (ω_1) de la structure en base bloquée. Les raideurs de sols sont ensuite ajustées aux premières fréquences propres significatives de la structure sur ressort jusqu'à correspondance des fréquences auxquelles les fonctions d'impédance sont calculées avec les valeurs des fréquences propres du système couplé sol-bâtiment.

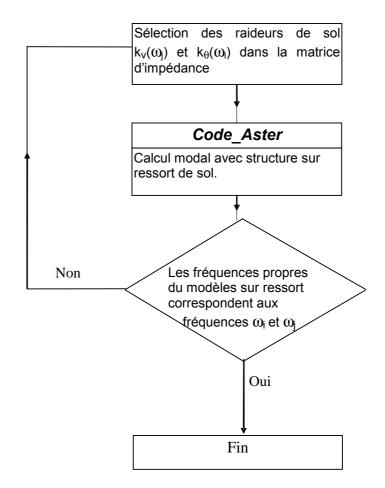


Figure 6.1-a : Processus d'ajustement des raideurs de sol

6.2 Prise en compte d'un amortissement modal calculé selon la règle du RCC-G

On décompose l'amortissement dû au sol en une partie d'origine matérielle et en une partie géométrique : amortissement dû à la réflexion des ondes élastiques dans le sol.

La règle du RCC-G consiste à sommer, pour chaque mode, les amortissements de chaque sous structure constitutive du bâtiment considéré et les amortissements structurel et géométrique du sol pondérés par leur taux respectifs d'énergie potentielle par rapport à l'énergie potentielle totale :

$$\eta_{i} = \frac{\sum_{k} E_{ki}. \eta_{k} + \sum_{s} E_{si}. \eta_{si}}{\sum_{k} E_{ki} + \sum_{s} E_{si}}$$

avec:

Titre: Réponse sismique par analyse transitoire Responsable: François VOLDOIRE

- Date: 25/04/2014 Page: 18/20 Clé: R4.05.01 Révision: 12281
- η_i , l'amortissement réduit moyen du mode i;
- η_k , l'amortissement réduit du k ^{ème} élément de la structure ;
- η_{si} , l'amortissement réduit du ressort de sol s pour le mode i ;
- E_{ki} , l'énergie potentielle du k ^{ème} élément de la structure pour le mode i ;
- ullet et $E_{\it si}$, l'énergie potentielle du ressort de sol $\it s$ pour le mode $\it i$.

Dans le règlement, l'amortissement modal est limité à une valeur maximale de 0,3.

La partie d'origine matérielle de l'amortissement du sol est calculée en pondérant l'amortissement de chaque sous structure par le rapport : taux d'énergie potentielle sur énergie potentielle totale. Quant à la partie géométrique de l'amortissement, elle est calculée en répartissant les valeurs d'amortissement pour chaque direction (trois translations et trois rotations) pondérées par le taux d'énergie potentielle dans le sol de la direction. Les valeurs d'amortissement directionnelles sont obtenues en interpolant, pour chaque fréquence propre calculée, les fonctions d'amortissement directionnelles issue d'un code d'interaction sol-structure (PARASOL, CLASSI ou MISS3D). Le rapport de la partie imaginaire sur

 $\frac{\operatorname{Im}(K(\omega))}{2\operatorname{.Re}(K(\omega))}$, fournit les valeurs de cet deux fois la partie réelle de la matrice d'impédance : amortissement radiatif.

La démarche à suivre est la suivante :

•Calcul de l'énergie potentielle dissipée dans la structure étudiée : POST ELEM [U4.81.22]

$$E_k$$
 = POST ELEM (ENER POT= F (TOUT = 'OUI')) ;

•Calcul de l'amortissement modal par la règle du RCC-G : CALC AMOR MODAL [U4.52.13]

```
l amor = CALC AMOR MODAL (
     ENER SOL = F (MODE MECA = base modale, GROUP NO RADIER = ... ,
                          KX = Kx(\omega_0) , KY = Ky(\omega_0) , KZ = Kz(\omega_1) ,
                          \texttt{KRX} = \textit{Krx}\left(\omega_{0}\right) \text{ , } \texttt{KRY} = \textit{Kry}\left(\omega_{0}\right) \text{ , } \texttt{KRZ} \text{ : } \textit{Krz}\left(\omega_{1}\right) \text{ )) ;}
     AMOR_INTERNE =_F (GROUP_MA =..., ENER_POT = E_k , AMOR_REDUIT = \eta_k )
     AMOR_SOL =F (FONC_AMOR_GEO = \frac{\operatorname{Im}(K(\omega))}{2\operatorname{Re}(K(\omega))})
```

Le calcul de la contribution du sol à l'énergie potentielle $E_{\rm s}$ (mot clé facteur <code>ENER SOL</code>) est calculée à partir des valeurs d'impédance de sol déterminées précédemment (cf. [§6.1]). Elle peut être calculée selon deux méthodes différentes selon que l'on moyenne les efforts modaux (mot clé RIGI PARASOL) ou les déplacements modaux aux nœuds du radier.

L'amortissement réduit du ressort de sol η_s (mot clé facteur AMOR SOL) est calculé à partir des valeurs de l'amortissement radiatif.

6.3 Répartition des raideurs et amortissement de sol

Si l'on veut étudier l'effet d'un séisme sur le décollement éventuel du radier par exemple, on peut être amené à modéliser le sol non plus par un ressort unique au centre de gravité de l'interface sol-bâtiment mais par un tapis de ressorts. Ceci est possible grâce à la commande AFFE CARA ELEM [U4.42.01] option RIGI PARASOL.

La démarche consiste à calculer en chaque nœud du maillage du radier les raideurs élémentaires $\left(k_x,k_y,k_z,kr_x,kr_y,kr_z\right)$ à appliquer à partir des valeurs globales des trois ressorts de translations :

Révision: 12281

Date: 25/04/2014 Page: 19/20

Clé: R4.05.01

Titre : Réponse sismique par analyse transitoire Responsable : François VOLDOIRE

kx, ky, kz et des trois ressorts de rotations : krx, kry, krz issues d'un code d'interaction solstructure (ou calculées analytiquement).

On suppose que les raideurs élémentaires de translation sont proportionnelles à la surface S(P) représentée par le nœud P et à une fonction de répartition f(r) dépendant de la distance r du nœud P au centre de gravité du radier O:

$$\begin{cases} K_{x} = \sum_{P} k_{x}(P) = k_{x}. \sum_{P} S(P).f(OP) \\ K_{y} = \sum_{P} k_{y}(P) = k_{y}. \sum_{P} S(P).f(OP) \\ K_{z} = \sum_{P} k_{z}(P) = k_{z}. \sum_{P} S(P).f(OP) \end{cases}$$

On en déduit alors k_x puis $k_x(P)$ à partir du calcul :

$$k_x(P) = k_x.S(P).f(OP) = K_x.\frac{S(P).f(OP)}{\sum_{P} S(P).f(OP)}$$
.

On en déduit de même $\ k_{_{\boldsymbol{y}}}(\boldsymbol{P})\$ et $\ k_{_{\boldsymbol{z}}}(\boldsymbol{P})\$.

Pour les raideurs élémentaires de rotation, on répartit ce qui reste après avoir enlevé les contributions dues aux translations de la même façon que les translations :

$$\begin{bmatrix} K_{rx} \! = \! \sum_{P} k_{rx}(P) \! + \! \sum_{P} \left[k_y(P).z_{OP}^2 \! + \! k_z(P).y_{OP}^2 \right] \! = \! k_{rx}. \sum_{P} S(P).f(OP) \! + \! \sum_{P} \left[k_y(P).z_{OP}^2 \! + \! k_z(P).y_{OP}^2 \right] \\ K_{ry} \! = \! \sum_{P} k_{ry}(P) \! + \! \sum_{P} \left[k_x(P).z_{OP}^2 \! + \! k_z(P).x_{OP}^2 \right] \! = \! k_{ry}. \sum_{P} S(P).f(OP) \! + \! \sum_{P} \left[k_x(P).z_{OP}^2 \! + \! k_z(P).x_{OP}^2 \right] \\ K_{rz} \! = \! \sum_{P} k_{rz}(P) \! + \! \sum_{P} \left[k_x(P).y_{OP}^2 \! + \! k_y(P).x_{OP}^2 \right] \! = \! k_{rz}. \sum_{P} S(P).f(OP) \! + \! \sum_{P} \left[k_x(P).y_{OP}^2 \! + \! k_y(P).x_{OP}^2 \right]$$

On en déduit alors k_{rx} puis $k_{rx}(P)$ à partir du calcul :

$$\begin{split} k_{rx}(P) &= k_{rx}.S(P).f(OP) \\ &= \left(K_{rx} - \sum_{P} \left[k_{y}(P).z_{OP}^{2} + k_{z}(P).y_{OP}^{2}\right]\right) \cdot \frac{S(P).f(OP)}{\sum_{P} S(P).f(OP)} \end{split}$$

On en déduit de même $\,k_{r\!v}(P)\,$ et $\,k_{r\!z}(P)\,$.

Remarque:

Par défaut, on considère que la fonction de répartition est constante et unitaire c'est-à-dire que chaque surface est affectée du même poids.

On peut répartir de même six valeurs globales d'amortissement, analytiques ou calculées par un code d'interaction sol-structure.

6.4 Prise en compte d'une frontière absorbante

Date: 25/04/2014 Page: 20/20

Titre : Réponse sismique par analyse transitoire

Responsable : François VOLDOIRE Clé : R4.05.01 Révision : 12281

Si l'on veut calculer la réponse sismique d'un barrage, il faut, entre autre, pouvoir prendre en compte la non réflexion des ondes dans la vallée. Ceci est possible grâce à des éléments à frontière absorbante : option IMPE_ABSO dans DYNA_NON_LINE et DYNA_LINE_TRAN. Cette fonctionnalité n'est pas détaillée dans le présent document. Elle fera l'objet d'une note spécifique.

7 Bibliographie

- [1] R.W. CLOUGH, J. PENZIEN Mc GRAW-HILL: « Dynamics of structures » (1975).
- (2) « Génie parasismique » ouvrage collectif sous la direction de V. DAVIDOVICI Presses de l'E.N.P.C. (1995).
- [3] P. LABBE, A. PECKER, J.P. TOURET: « Comportement sismique des structures industrielles » cours IPSI du 20 au 22 septembre 1994.
- [4] Fe WAECKEL : « Méthode pour le calcul par superposition modale de la réponse sismique d'une structure multi-supportée » Note HP62/95.017B (09/95).
- [5] V. GUYONVARH, G. DEVESA: « Méthode pour le calcul des excitations sismiques aux ancrages du CPP N4 » Note HP52/99.006 (09/99).
- [6] « Calcul sismique des bâtiments » Règles RCC-G, annexe A

8 Description des versions du document

Version Aster	Auteur(s) Organisme(s)	Description des modifications
05/01/00	Fe. WAECKEL- EDF/R&D/AMV	Texte initial