1 |
francois |
979 |
// Voro++, a 3D cell-based Voronoi library |
2 |
|
|
// |
3 |
|
|
// Author : Chris H. Rycroft (LBL / UC Berkeley) |
4 |
|
|
// Email : chr@alum.mit.edu |
5 |
|
|
// Date : August 30th 2011 |
6 |
|
|
|
7 |
|
|
/** \file wall.cc |
8 |
|
|
* \brief Function implementations for the derived wall classes. */ |
9 |
|
|
|
10 |
|
|
#include "wall.hh" |
11 |
|
|
|
12 |
|
|
namespace voro { |
13 |
|
|
|
14 |
|
|
/** Tests to see whether a point is inside the sphere wall object. |
15 |
|
|
* \param[in,out] (x,y,z) the vector to test. |
16 |
|
|
* \return True if the point is inside, false if the point is outside. */ |
17 |
|
|
bool wall_sphere::point_inside(double x,double y,double z) { |
18 |
|
|
return (x-xc)*(x-xc)+(y-yc)*(y-yc)+(z-zc)*(z-zc)<rc*rc; |
19 |
|
|
} |
20 |
|
|
|
21 |
|
|
/** Cuts a cell by the sphere wall object. The spherical wall is approximated by |
22 |
|
|
* a single plane applied at the point on the sphere which is closest to the center |
23 |
|
|
* of the cell. This works well for particle arrangements that are packed against |
24 |
|
|
* the wall, but loses accuracy for sparse particle distributions. |
25 |
|
|
* \param[in,out] c the Voronoi cell to be cut. |
26 |
|
|
* \param[in] (x,y,z) the location of the Voronoi cell. |
27 |
|
|
* \return True if the cell still exists, false if the cell is deleted. */ |
28 |
|
|
template<class v_cell> |
29 |
|
|
bool wall_sphere::cut_cell_base(v_cell &c,double x,double y,double z) { |
30 |
|
|
double xd=x-xc,yd=y-yc,zd=z-zc,dq=xd*xd+yd*yd+zd*zd; |
31 |
|
|
if (dq>1e-5) { |
32 |
|
|
dq=2*(sqrt(dq)*rc-dq); |
33 |
|
|
return c.nplane(xd,yd,zd,dq,w_id); |
34 |
|
|
} |
35 |
|
|
return true; |
36 |
|
|
} |
37 |
|
|
|
38 |
|
|
/** Tests to see whether a point is inside the plane wall object. |
39 |
|
|
* \param[in] (x,y,z) the vector to test. |
40 |
|
|
* \return True if the point is inside, false if the point is outside. */ |
41 |
|
|
bool wall_plane::point_inside(double x,double y,double z) { |
42 |
|
|
return x*xc+y*yc+z*zc<ac; |
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
/** Cuts a cell by the plane wall object. |
46 |
|
|
* \param[in,out] c the Voronoi cell to be cut. |
47 |
|
|
* \param[in] (x,y,z) the location of the Voronoi cell. |
48 |
|
|
* \return True if the cell still exists, false if the cell is deleted. */ |
49 |
|
|
template<class v_cell> |
50 |
|
|
bool wall_plane::cut_cell_base(v_cell &c,double x,double y,double z) { |
51 |
|
|
double dq=2*(ac-x*xc-y*yc-z*zc); |
52 |
|
|
return c.nplane(xc,yc,zc,dq,w_id); |
53 |
|
|
} |
54 |
|
|
|
55 |
|
|
/** Tests to see whether a point is inside the cylindrical wall object. |
56 |
|
|
* \param[in] (x,y,z) the vector to test. |
57 |
|
|
* \return True if the point is inside, false if the point is outside. */ |
58 |
|
|
bool wall_cylinder::point_inside(double x,double y,double z) { |
59 |
|
|
double xd=x-xc,yd=y-yc,zd=z-zc; |
60 |
|
|
double pa=(xd*xa+yd*ya+zd*za)*asi; |
61 |
|
|
xd-=xa*pa;yd-=ya*pa;zd-=za*pa; |
62 |
|
|
return xd*xd+yd*yd+zd*zd<rc*rc; |
63 |
|
|
} |
64 |
|
|
|
65 |
|
|
/** Cuts a cell by the cylindrical wall object. The cylindrical wall is |
66 |
|
|
* approximated by a single plane applied at the point on the cylinder which is |
67 |
|
|
* closest to the center of the cell. This works well for particle arrangements |
68 |
|
|
* that are packed against the wall, but loses accuracy for sparse particle |
69 |
|
|
* distributions. |
70 |
|
|
* \param[in,out] c the Voronoi cell to be cut. |
71 |
|
|
* \param[in] (x,y,z) the location of the Voronoi cell. |
72 |
|
|
* \return True if the cell still exists, false if the cell is deleted. */ |
73 |
|
|
template<class v_cell> |
74 |
|
|
bool wall_cylinder::cut_cell_base(v_cell &c,double x,double y,double z) { |
75 |
|
|
double xd=x-xc,yd=y-yc,zd=z-zc,pa=(xd*xa+yd*ya+zd*za)*asi; |
76 |
|
|
xd-=xa*pa;yd-=ya*pa;zd-=za*pa; |
77 |
|
|
pa=xd*xd+yd*yd+zd*zd; |
78 |
|
|
if(pa>1e-5) { |
79 |
|
|
pa=2*(sqrt(pa)*rc-pa); |
80 |
|
|
return c.nplane(xd,yd,zd,pa,w_id); |
81 |
|
|
} |
82 |
|
|
return true; |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
/** Tests to see whether a point is inside the cone wall object. |
86 |
|
|
* \param[in] (x,y,z) the vector to test. |
87 |
|
|
* \return True if the point is inside, false if the point is outside. */ |
88 |
|
|
bool wall_cone::point_inside(double x,double y,double z) { |
89 |
|
|
double xd=x-xc,yd=y-yc,zd=z-zc,pa=(xd*xa+yd*ya+zd*za)*asi; |
90 |
|
|
xd-=xa*pa;yd-=ya*pa;zd-=za*pa; |
91 |
|
|
pa*=gra; |
92 |
|
|
if (pa<0) return false; |
93 |
|
|
pa*=pa; |
94 |
|
|
return xd*xd+yd*yd+zd*zd<pa; |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
/** Cuts a cell by the cone wall object. The conical wall is |
98 |
|
|
* approximated by a single plane applied at the point on the cone which is |
99 |
|
|
* closest to the center of the cell. This works well for particle arrangements |
100 |
|
|
* that are packed against the wall, but loses accuracy for sparse particle |
101 |
|
|
* distributions. |
102 |
|
|
* \param[in,out] c the Voronoi cell to be cut. |
103 |
|
|
* \param[in] (x,y,z) the location of the Voronoi cell. |
104 |
|
|
* \return True if the cell still exists, false if the cell is deleted. */ |
105 |
|
|
template<class v_cell> |
106 |
|
|
bool wall_cone::cut_cell_base(v_cell &c,double x,double y,double z) { |
107 |
|
|
double xd=x-xc,yd=y-yc,zd=z-zc,xf,yf,zf,q,pa=(xd*xa+yd*ya+zd*za)*asi; |
108 |
|
|
xd-=xa*pa;yd-=ya*pa;zd-=za*pa; |
109 |
|
|
pa=xd*xd+yd*yd+zd*zd; |
110 |
|
|
if(pa>1e-5) { |
111 |
|
|
pa=1/sqrt(pa); |
112 |
|
|
q=sqrt(asi); |
113 |
|
|
xf=-sang*q*xa+cang*pa*xd; |
114 |
|
|
yf=-sang*q*ya+cang*pa*yd; |
115 |
|
|
zf=-sang*q*za+cang*pa*zd; |
116 |
|
|
pa=2*(xf*(xc-x)+yf*(yc-y)+zf*(zc-z)); |
117 |
|
|
return c.nplane(xf,yf,zf,pa,w_id); |
118 |
|
|
} |
119 |
|
|
return true; |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
// Explicit instantiation |
123 |
|
|
template bool wall_sphere::cut_cell_base(voronoicell&,double,double,double); |
124 |
|
|
template bool wall_sphere::cut_cell_base(voronoicell_neighbor&,double,double,double); |
125 |
|
|
template bool wall_plane::cut_cell_base(voronoicell&,double,double,double); |
126 |
|
|
template bool wall_plane::cut_cell_base(voronoicell_neighbor&,double,double,double); |
127 |
|
|
template bool wall_cylinder::cut_cell_base(voronoicell&,double,double,double); |
128 |
|
|
template bool wall_cylinder::cut_cell_base(voronoicell_neighbor&,double,double,double); |
129 |
|
|
template bool wall_cone::cut_cell_base(voronoicell&,double,double,double); |
130 |
|
|
template bool wall_cone::cut_cell_base(voronoicell_neighbor&,double,double,double); |
131 |
|
|
|
132 |
|
|
} |