ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/REPOS_ERICCA/poly_occ/voro++-0.4.6/src/unitcell.cc
Revision: 979
Committed: Thu Oct 18 23:40:32 2018 UTC (6 years, 7 months ago) by francois
File size: 9082 byte(s)
Log Message:
creation de polycristaux avec OCC

File Contents

# User Rev Content
1 francois 979 // Voro++, a 3D cell-based Voronoi library
2     //
3     // Author : Chris H. Rycroft (LBL / UC Berkeley)
4     // Email : chr@alum.mit.edu
5     // Date : August 30th 2011
6    
7     /** \file unitcell.cc
8     * \brief Function implementations for the unitcell class. */
9    
10     #include <cmath>
11     #include <queue>
12    
13     #include "unitcell.hh"
14     #include "cell.hh"
15    
16     namespace voro {
17    
18     /** Initializes the unit cell class for a particular non-orthogonal periodic
19     * geometry, corresponding to a parallelepiped with sides given by three
20     * vectors. The class constructs the unit Voronoi cell corresponding to this
21     * geometry.
22     * \param[in] (bx_) The x coordinate of the first unit vector.
23     * \param[in] (bxy_,by_) The x and y coordinates of the second unit vector.
24     * \param[in] (bxz_,byz_,bz_) The x, y, and z coordinates of the third unit
25     * vector. */
26     unitcell::unitcell(double bx_,double bxy_,double by_,double bxz_,double byz_,double bz_)
27     : bx(bx_), bxy(bxy_), by(by_), bxz(bxz_), byz(byz_), bz(bz_) {
28     int i,j,l=1;
29    
30     // Initialize the Voronoi cell to be a very large rectangular box
31     const double ucx=max_unit_voro_shells*bx,ucy=max_unit_voro_shells*by,ucz=max_unit_voro_shells*bz;
32     unit_voro.init(-ucx,ucx,-ucy,ucy,-ucz,ucz);
33    
34     // Repeatedly cut the cell by shells of periodic image particles
35     while(l<2*max_unit_voro_shells) {
36    
37     // Check to see if any of the planes from the current shell
38     // will cut the cell
39     if(unit_voro_intersect(l)) {
40    
41     // If they do, apply the plane cuts from the current
42     // shell
43     unit_voro_apply(l,0,0);
44     for(i=1;i<l;i++) {
45     unit_voro_apply(l,i,0);
46     unit_voro_apply(-l,i,0);
47     }
48     for(i=-l;i<=l;i++) unit_voro_apply(i,l,0);
49     for(i=1;i<l;i++) for(j=-l+1;j<=l;j++) {
50     unit_voro_apply(l,j,i);
51     unit_voro_apply(-j,l,i);
52     unit_voro_apply(-l,-j,i);
53     unit_voro_apply(j,-l,i);
54     }
55     for(i=-l;i<=l;i++) for(j=-l;j<=l;j++) unit_voro_apply(i,j,l);
56     } else {
57    
58     // Calculate a bound on the maximum y and z coordinates
59     // that could possibly cut the cell. This is based upon
60     // a geometric result that particles with z>l can't cut
61     // a cell lying within the paraboloid
62     // z<=(l*l-x*x-y*y)/(2*l). It is always a tighter bound
63     // than the one based on computing the maximum radius
64     // of a Voronoi cell vertex.
65     max_uv_y=max_uv_z=0;
66     double y,z,q,*pts=unit_voro.pts,*pp=pts;
67     while(pp<pts+3*unit_voro.p) {
68     q=*(pp++);y=*(pp++);z=*(pp++);q=sqrt(q*q+y*y+z*z);
69     if(y+q>max_uv_y) max_uv_y=y+q;
70     if(z+q>max_uv_z) max_uv_z=z+q;
71     }
72     max_uv_z*=0.5;
73     max_uv_y*=0.5;
74     return;
75     }
76     l++;
77     }
78    
79     // If the routine makes it here, then the unit cell still hasn't been
80     // completely bounded by the plane cuts. Give the memory error code,
81     // because this is mainly a case of hitting a safe limit, than any
82     // inherent problem.
83     voro_fatal_error("Periodic cell computation failed",VOROPP_MEMORY_ERROR);
84     }
85    
86     /** Applies a pair of opposing plane cuts from a periodic image point
87     * to the unit Voronoi cell.
88     * \param[in] (i,j,k) the index of the periodic image to consider. */
89     inline void unitcell::unit_voro_apply(int i,int j,int k) {
90     double x=i*bx+j*bxy+k*bxz,y=j*by+k*byz,z=k*bz;
91     unit_voro.plane(x,y,z);
92     unit_voro.plane(-x,-y,-z);
93     }
94    
95     /** Calculates whether the unit Voronoi cell intersects a given periodic image
96     * of the domain.
97     * \param[in] (dx,dy,dz) the displacement of the periodic image.
98     * \param[out] vol the proportion of the unit cell volume within this image,
99     * only computed in the case that the two intersect.
100     * \return True if they intersect, false otherwise. */
101     bool unitcell::intersects_image(double dx,double dy,double dz,double &vol) {
102     const double bxinv=1/bx,byinv=1/by,bzinv=1/bz,ivol=bxinv*byinv*bzinv;
103     voronoicell c;
104     c=unit_voro;
105     dx*=2;dy*=2;dz*=2;
106     if(!c.plane(0,0,bzinv,dz+1)) return false;
107     if(!c.plane(0,0,-bzinv,-dz+1)) return false;
108     if(!c.plane(0,byinv,-byz*byinv*bzinv,dy+1)) return false;
109     if(!c.plane(0,-byinv,byz*byinv*bzinv,-dy+1)) return false;
110     if(!c.plane(bxinv,-bxy*bxinv*byinv,(bxy*byz-by*bxz)*ivol,dx+1)) return false;
111     if(!c.plane(-bxinv,bxy*bxinv*byinv,(-bxy*byz+by*bxz)*ivol,-dx+1)) return false;
112     vol=c.volume()*ivol;
113     return true;
114     }
115    
116     /** Computes a list of periodic domain images that intersect the unit Voronoi cell.
117     * \param[out] vi a vector containing triplets (i,j,k) corresponding to domain
118     * images that intersect the unit Voronoi cell, when it is
119     * centered in the middle of the primary domain.
120     * \param[out] vd a vector containing the fraction of the Voronoi cell volume
121     * within each corresponding image listed in vi. */
122     void unitcell::images(std::vector<int> &vi,std::vector<double> &vd) {
123     const int ms2=max_unit_voro_shells*2+1,mss=ms2*ms2*ms2;
124     bool *a=new bool[mss],*ac=a+max_unit_voro_shells*(1+ms2*(1+ms2)),*ap=a;
125     int i,j,k;
126     double vol;
127    
128     // Initialize mask
129     while(ap<ac) *(ap++)=true;
130     *(ap++)=false;
131     while(ap<a+mss) *(ap++)=true;
132    
133     // Set up the queue and add (0,0,0) image to it
134     std::queue<int> q;
135     q.push(0);q.push(0);q.push(0);
136    
137     while(!q.empty()) {
138    
139     // Read the next entry on the queue
140     i=q.front();q.pop();
141     j=q.front();q.pop();
142     k=q.front();q.pop();
143    
144     // Check intersection of this image
145     if(intersects_image(i,j,k,vol)) {
146    
147     // Add this entry to the output vectors
148     vi.push_back(i);
149     vi.push_back(j);
150     vi.push_back(k);
151     vd.push_back(vol);
152    
153     // Add neighbors to the queue if they have not been
154     // tested
155     ap=ac+i+ms2*(j+ms2*k);
156     if(k>-max_unit_voro_shells&&*(ap-ms2*ms2)) {q.push(i);q.push(j);q.push(k-1);*(ap-ms2*ms2)=false;}
157     if(j>-max_unit_voro_shells&&*(ap-ms2)) {q.push(i);q.push(j-1);q.push(k);*(ap-ms2)=false;}
158     if(i>-max_unit_voro_shells&&*(ap-1)) {q.push(i-1);q.push(j);q.push(k);*(ap-1)=false;}
159     if(i<max_unit_voro_shells&&*(ap+1)) {q.push(i+1);q.push(j);q.push(k);*(ap+1)=false;}
160     if(j<max_unit_voro_shells&&*(ap+ms2)) {q.push(i);q.push(j+1);q.push(k);*(ap+ms2)=false;}
161     if(k<max_unit_voro_shells&&*(ap+ms2*ms2)) {q.push(i);q.push(j);q.push(k+1);*(ap+ms2*ms2)=false;}
162     }
163     }
164    
165     // Remove mask memory
166     delete [] a;
167     }
168    
169     /** Tests to see if a shell of periodic images could possibly cut the periodic
170     * unit cell.
171     * \param[in] l the index of the shell to consider.
172     * \return True if a point in the shell cuts the cell, false otherwise. */
173     bool unitcell::unit_voro_intersect(int l) {
174     int i,j;
175     if(unit_voro_test(l,0,0)) return true;
176     for(i=1;i<l;i++) {
177     if(unit_voro_test(l,i,0)) return true;
178     if(unit_voro_test(-l,i,0)) return true;
179     }
180     for(i=-l;i<=l;i++) if(unit_voro_test(i,l,0)) return true;
181     for(i=1;i<l;i++) for(j=-l+1;j<=l;j++) {
182     if(unit_voro_test(l,j,i)) return true;
183     if(unit_voro_test(-j,l,i)) return true;
184     if(unit_voro_test(-l,-j,i)) return true;
185     if(unit_voro_test(j,-l,i)) return true;
186     }
187     for(i=-l;i<=l;i++) for(j=-l;j<=l;j++) if(unit_voro_test(i,j,l)) return true;
188     return false;
189     }
190    
191     /** Tests to see if a plane cut from a particular periodic image will cut th
192     * unit Voronoi cell.
193     * \param[in] (i,j,k) the index of the periodic image to consider.
194     * \return True if the image cuts the cell, false otherwise. */
195     inline bool unitcell::unit_voro_test(int i,int j,int k) {
196     double x=i*bx+j*bxy+k*bxz,y=j*by+k*byz,z=k*bz;
197     double rsq=x*x+y*y+z*z;
198     return unit_voro.plane_intersects(x,y,z,rsq);
199     }
200    
201     /** Draws the periodic domain in gnuplot format.
202     * \param[in] fp the file handle to write to. */
203     void unitcell::draw_domain_gnuplot(FILE *fp) {
204     fprintf(fp,"0 0 0\n%g 0 0\n%g %g 0\n%g %g 0\n",bx,bx+bxy,by,bxy,by);
205     fprintf(fp,"%g %g %g\n%g %g %g\n%g %g %g\n%g %g %g\n",bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz,bx+bxz,byz,bz,bxz,byz,bz);
206     fprintf(fp,"0 0 0\n%g %g 0\n\n%g %g %g\n%g %g %g\n\n",bxy,by,bxz,byz,bz,bxy+bxz,by+byz,bz);
207     fprintf(fp,"%g 0 0\n%g %g %g\n\n%g %g 0\n%g %g %g\n\n",bx,bx+bxz,byz,bz,bx+bxy,by,bx+bxy+bxz,by+byz,bz);
208     }
209    
210     /** Draws the periodic domain in POV-Ray format.
211     * \param[in] fp the file handle to write to. */
212     void unitcell::draw_domain_pov(FILE *fp) {
213     fprintf(fp,"cylinder{0,0,0>,<%g,0,0>,rr}\n"
214     "cylinder{<%g,%g,0>,<%g,%g,0>,rr}\n",bx,bxy,by,bx+bxy,by);
215     fprintf(fp,"cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n"
216     "cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bx+bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz);
217     fprintf(fp,"cylinder{<0,0,0>,<%g,%g,0>,rr}\n"
218     "cylinder{<%g,0,0>,<%g,%g,0>,rr}\n",bxy,by,bx,bx+bxy,by);
219     fprintf(fp,"cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n"
220     "cylinder{<%g,%g,%g>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxz,byz,bz,bx+bxy+bxz,by+byz,bz);
221     fprintf(fp,"cylinder{<0,0,0>,<%g,%g,%g>,rr}\n"
222     "cylinder{<%g,0,0>,<%g,%g,%g>,rr}\n",bxz,byz,bz,bx,bx+bxz,byz,bz);
223     fprintf(fp,"cylinder{<%g,%g,0>,<%g,%g,%g>,rr}\n"
224     "cylinder{<%g,%g,0>,<%g,%g,%g>,rr}\n",bxy,by,bxy+bxz,by+byz,bz,bx+bxy,by,bx+bxy+bxz,by+byz,bz);
225     fprintf(fp,"sphere{<0,0,0>,rr}\nsphere{<%g,0,0>,rr}\n"
226     "sphere{<%g,%g,0>,rr}\nsphere{<%g,%g,0>,rr}\n",bx,bxy,by,bx+bxy,by);
227     fprintf(fp,"sphere{<%g,%g,%g>,rr}\nsphere{<%g,%g,%g>,rr}\n"
228     "sphere{<%g,%g,%g>,rr}\nsphere{<%g,%g,%g>,rr}\n",bxz,byz,bz,bx+bxz,byz,bz,bxy+bxz,by+byz,bz,bx+bxy+bxz,by+byz,bz);
229     }
230    
231     }