1 |
foucault |
27 |
//---------------------------------------------------------------------------
|
2 |
|
|
|
3 |
|
|
|
4 |
|
|
#include <stdio.h>
|
5 |
|
|
#include <math.h>
|
6 |
|
|
|
7 |
|
|
#pragma hdrstop
|
8 |
|
|
|
9 |
|
|
#include "gestionversion.h"
|
10 |
|
|
#include "ot_root_find.h"
|
11 |
|
|
|
12 |
|
|
//---------------------------------------------------------------------------
|
13 |
|
|
#pragma package(smart_init)
|
14 |
|
|
|
15 |
|
|
#define SMALL_NUM_1 1E-14
|
16 |
|
|
#define SMALL_NUM_2 1E-28
|
17 |
|
|
|
18 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracOut (Function fn, double &x1, double &x2, void* pvData) {
|
19 |
|
|
const double FACTOR = 1.6;
|
20 |
|
|
const unsigned NTRY = 50;
|
21 |
|
|
|
22 |
|
|
double f1 = fn (x1, pvData), f2 = fn (x2, pvData);
|
23 |
|
|
unsigned j;
|
24 |
|
|
|
25 |
|
|
if (x1 == x2)
|
26 |
|
|
{
|
27 |
|
|
// printf ("you have to guess an initial range");
|
28 |
|
|
return 1E308;
|
29 |
|
|
}
|
30 |
|
|
for (j = 1; j <= NTRY; j++) {
|
31 |
|
|
if (f1*f2 < 0.) return 1; // found a root
|
32 |
|
|
if (fabs (f1) < fabs (f2)){
|
33 |
|
|
x1 += FACTOR*(x1-x2); // expand towards x1
|
34 |
|
|
f1 = fn (x1, pvData); }
|
35 |
|
|
else {
|
36 |
|
|
x2 += FACTOR*(x2-x1); // ... or towards x2
|
37 |
|
|
f2 = fn (x2, pvData); } }
|
38 |
|
|
return 1E308;
|
39 |
|
|
} // no root bracketed
|
40 |
|
|
|
41 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracOut (Function fn, double xStart, double xEnd, double &x1, double &x2, void* pvData) {
|
42 |
|
|
const double FACTOR = 1.6;
|
43 |
|
|
const unsigned NTRY = 50;
|
44 |
|
|
|
45 |
|
|
if (x1>x2) {double tmp=x1;x1=x2;x2=tmp;}
|
46 |
|
|
if (xStart>xEnd) {double tmp=xStart;xEnd=xStart;xEnd=tmp;}
|
47 |
|
|
double deltaT=xEnd-xStart;
|
48 |
|
|
|
49 |
|
|
if (x1 < xStart)
|
50 |
|
|
x1 = xStart;
|
51 |
|
|
else if (x1 > xEnd)
|
52 |
|
|
x1 = xEnd;
|
53 |
|
|
if (x2 < xStart)
|
54 |
|
|
x2 = xStart;
|
55 |
|
|
else if (x2 > xEnd)
|
56 |
|
|
x2 = xEnd;
|
57 |
|
|
|
58 |
|
|
if (x1 == x2)
|
59 |
|
|
{
|
60 |
|
|
x1 -= .1*deltaT;
|
61 |
|
|
x1 = (x1>xStart)?x1:xStart;
|
62 |
|
|
x2 += .1*deltaT;
|
63 |
|
|
x2 = (x2<xEnd)?x2:xEnd;
|
64 |
|
|
}
|
65 |
|
|
|
66 |
|
|
double f1 = fn (x1, pvData), f2 = fn (x2, pvData);
|
67 |
|
|
unsigned j;
|
68 |
|
|
|
69 |
|
|
if (x1 == x2)
|
70 |
|
|
{
|
71 |
|
|
// printf ("you have to guess an initial range");
|
72 |
|
|
return 1E308;
|
73 |
|
|
}
|
74 |
|
|
for (j = 1; j <= NTRY; j++) {
|
75 |
|
|
if (f1*f2 < 0.) return 1; // found a root
|
76 |
|
|
if (fabs (f1) < fabs (f2) && x1 > xStart )
|
77 |
|
|
{
|
78 |
|
|
if (x1+FACTOR*(x1-x2) > xStart)
|
79 |
|
|
{
|
80 |
|
|
x1 += FACTOR*(x1-x2); // expand towards x1
|
81 |
|
|
}
|
82 |
|
|
else
|
83 |
|
|
{
|
84 |
|
|
x1 = xStart;
|
85 |
|
|
}
|
86 |
|
|
f1 = fn (x1, pvData);
|
87 |
|
|
}
|
88 |
|
|
else if (x2 < xEnd ) {
|
89 |
|
|
if (x2+FACTOR*(x2-x1) < xEnd)
|
90 |
|
|
{
|
91 |
|
|
x2 += FACTOR*(x2-x1); // ... or towards x2
|
92 |
|
|
}
|
93 |
|
|
else
|
94 |
|
|
{
|
95 |
|
|
x2 = xEnd;
|
96 |
|
|
}
|
97 |
|
|
f2 = fn (x2, pvData);
|
98 |
|
|
}
|
99 |
|
|
else
|
100 |
|
|
break;
|
101 |
|
|
}
|
102 |
|
|
return 0;
|
103 |
|
|
} // no root bracketed
|
104 |
|
|
|
105 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracIn (Function fn, const double &x1, const double &x2,
|
106 |
|
|
unsigned n, double xb1[], double xb2[], unsigned nb, void* pvData) {
|
107 |
|
|
unsigned i, nbb = nb;
|
108 |
|
|
double x = x1, dx = (x2-x1)/n, // determine appropriate spacing
|
109 |
|
|
fp = fn (x, pvData);
|
110 |
|
|
|
111 |
|
|
nb = 0;
|
112 |
|
|
for (i = 1; i <= n; i++) { // loop over all intervals
|
113 |
|
|
double fc;
|
114 |
|
|
|
115 |
|
|
x += dx;
|
116 |
|
|
fc = fn (x, pvData);
|
117 |
|
|
if (fc*fp < 0.) { // if a sign change occurs, record
|
118 |
|
|
xb1[nb] = x-dx; // values for the bounds.
|
119 |
|
|
xb2[nb] = x;
|
120 |
|
|
nb++;}
|
121 |
|
|
fp = fc;
|
122 |
|
|
if (nbb == nb) return nb; }
|
123 |
|
|
return nb;
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
|
127 |
|
|
double OT_ROOT_FIND_1D::RootBisect (Function fn, const double &x1, const double &x2, const double &xacc, void* pvData)
|
128 |
|
|
{
|
129 |
|
|
const unsigned JMAX = 50;
|
130 |
|
|
double fmid = fn (x2, pvData), f = fn (x1, pvData), rtbis, dx;
|
131 |
|
|
unsigned j;
|
132 |
|
|
|
133 |
|
|
if (fmid*f >= 0)
|
134 |
|
|
{
|
135 |
|
|
// printf ("root must be bracketed for bisection");
|
136 |
|
|
return 1E308;
|
137 |
|
|
}
|
138 |
|
|
|
139 |
|
|
if (f < 0.) { // orient the search so that f > 0
|
140 |
|
|
rtbis = x1; // lies at x+dx.
|
141 |
|
|
dx = x2-x1; }
|
142 |
|
|
else {
|
143 |
|
|
rtbis = x2;
|
144 |
|
|
dx = x1-x2; }
|
145 |
|
|
|
146 |
|
|
for (j = 1; j <= JMAX; j++) { // bisection loop
|
147 |
|
|
double xmid;
|
148 |
|
|
|
149 |
|
|
dx *= .5; // here we halve the interval
|
150 |
|
|
xmid = rtbis+dx; // and update boundaries and
|
151 |
|
|
fmid = fn (xmid, pvData); // function value
|
152 |
|
|
if (fmid <= 0.) rtbis = xmid;
|
153 |
|
|
if ((fabs (dx) <= xacc)||(fmid == 0.)) return rtbis; }
|
154 |
|
|
// printf ("too many bisections");
|
155 |
|
|
return 1E308;
|
156 |
|
|
} // this should happen rarely (2^-50 ~ 10^-15)
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
double OT_ROOT_FIND_1D::RootFlsPos (Function fn, const double &x1, const double &x2,
|
160 |
|
|
const double &xacc, void* pvData) {
|
161 |
|
|
const unsigned MAXIT = 40;
|
162 |
|
|
double flo = fn (x1, pvData), fhi = fn (x2, pvData), xl, xh, dx, dummy;
|
163 |
|
|
unsigned j;
|
164 |
|
|
|
165 |
|
|
if (flo*fhi >= 0)
|
166 |
|
|
{
|
167 |
|
|
// printf ("root must be bracketed for false position");
|
168 |
|
|
return 1E308;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
if (flo < 0.) { // let xl correspond to the low side
|
172 |
|
|
xl = x1; xh = x2;
|
173 |
|
|
}
|
174 |
|
|
else {
|
175 |
|
|
{ dummy=flo;
|
176 |
|
|
flo=fhi;
|
177 |
|
|
fhi=dummy;
|
178 |
|
|
}
|
179 |
|
|
xl = x2; xh = x1;
|
180 |
|
|
}
|
181 |
|
|
dx = xh-xl;
|
182 |
|
|
|
183 |
|
|
for (j = 1; j <= MAXIT; j++) { // false position loop
|
184 |
|
|
double rtflsp = xl+dx*flo/(flo-fhi),// increment w/ respect to latest
|
185 |
|
|
f = fn (rtflsp, pvData), // value
|
186 |
|
|
del = (f < 0.)? xl-rtflsp: xh-rtflsp;
|
187 |
|
|
|
188 |
|
|
if (f < 0.) { // replace appropriate limit
|
189 |
|
|
xl = rtflsp; flo = f; }
|
190 |
|
|
else {
|
191 |
|
|
xh = rtflsp; fhi = f; }
|
192 |
|
|
dx = xh-xl;
|
193 |
|
|
|
194 |
|
|
if ((fabs (del) <= xacc)||(f == 0.)) return rtflsp; } // convergence
|
195 |
|
|
|
196 |
|
|
// printf ("RootFlsPos exceeded maximum iterations");
|
197 |
|
|
return 1E308;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
double OT_ROOT_FIND_1D::RootNewton (Function fn, Function df,
|
202 |
|
|
const double &x1, const double &x2, const double &xacc, void* pvData) {
|
203 |
|
|
const unsigned JMAX = 20;
|
204 |
|
|
double rtnewt = .5*(x1+x2); // initial guess
|
205 |
|
|
unsigned j;
|
206 |
|
|
|
207 |
|
|
for (j = 1; j <= JMAX; j++) {
|
208 |
|
|
double f = fn (rtnewt, pvData), fs = df (rtnewt, pvData),
|
209 |
|
|
dx = f/fs;
|
210 |
|
|
|
211 |
|
|
rtnewt -= dx;
|
212 |
|
|
if ((x1-rtnewt)*(rtnewt-x2) < 0.)
|
213 |
|
|
{
|
214 |
|
|
// printf ("jumped out of brackets");
|
215 |
|
|
return 1E308;
|
216 |
|
|
}
|
217 |
|
|
if (fabs (dx) < xacc) return rtnewt; } // convergence
|
218 |
|
|
|
219 |
|
|
// printf("RootNewton exceeded maximum iterations");
|
220 |
|
|
return 1E308;
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
double OT_ROOT_FIND_1D::RootSafe (Function fn, Function df,
|
224 |
|
|
const double &x1, const double &x2, const double &xacc, void* pvData) {
|
225 |
|
|
const unsigned JMAX = 100;
|
226 |
|
|
|
227 |
|
|
double fl = fn (x1, pvData), fh = fn (x2, pvData), xl, xh;
|
228 |
|
|
|
229 |
|
|
if (fl*fh > SMALL_NUM_2)
|
230 |
|
|
{
|
231 |
|
|
// printf ("root must be bracketed");
|
232 |
|
|
return 1E308;
|
233 |
|
|
}
|
234 |
|
|
if (fl < 0) { // orient the search so that f (xl) < 0
|
235 |
|
|
xl = x1; xh = x2; }
|
236 |
|
|
else {
|
237 |
|
|
xl = x2; xh = x1; }
|
238 |
|
|
|
239 |
|
|
double rtsafe = .5*(x1+x2); // initial guess
|
240 |
|
|
double dxold = fabs (x2-x1),
|
241 |
|
|
dx = dxold;
|
242 |
|
|
double f = fn (rtsafe, pvData), fp = df (rtsafe, pvData);
|
243 |
|
|
|
244 |
|
|
for (unsigned j = 1; j <= JMAX; j++) {
|
245 |
|
|
if ( ( ((rtsafe-xh)*fp-f)*((rtsafe-xl)*fp-f) >= 0 ) || // bisect if newton out of brackets
|
246 |
|
|
( fabs (2*f) > fabs (dxold*fp) ) ) { // or not decreasing fast enough
|
247 |
|
|
dxold = dx;
|
248 |
|
|
dx = .5*(xh -xl);
|
249 |
|
|
rtsafe = xl+dx;
|
250 |
|
|
if (xl == rtsafe) return rtsafe; } // change in root is negligible
|
251 |
|
|
else {
|
252 |
|
|
dxold = dx;
|
253 |
|
|
dx = f/fp;
|
254 |
|
|
double temp = rtsafe;
|
255 |
|
|
rtsafe -= dx;
|
256 |
|
|
if (temp == rtsafe) return rtsafe; }
|
257 |
|
|
if (fabs (dx) < xacc) return rtsafe; // convergence
|
258 |
|
|
f = fn (rtsafe, pvData); fp = df (rtsafe, pvData);
|
259 |
|
|
if (f < 0) xl = rtsafe;
|
260 |
|
|
else xh = rtsafe; }
|
261 |
|
|
// printf("too many iterations");
|
262 |
|
|
return 1E308;
|
263 |
|
|
}
|
264 |
|
|
|