1 |
francois |
283 |
//--------------------------------------------------------------------------- |
2 |
|
|
|
3 |
|
|
|
4 |
|
|
#include <stdio.h> |
5 |
|
|
#include <math.h> |
6 |
|
|
|
7 |
|
|
#pragma hdrstop |
8 |
|
|
|
9 |
|
|
#include "ot_root_find.h" |
10 |
|
|
|
11 |
|
|
//--------------------------------------------------------------------------- |
12 |
|
|
#pragma package(smart_init) |
13 |
|
|
|
14 |
|
|
#define SMALL_NUM_1 1E-14 |
15 |
|
|
#define SMALL_NUM_2 1E-28 |
16 |
|
|
|
17 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracOut (Function fn, double &x1, double &x2, void* pvData) { |
18 |
|
|
const double FACTOR = 1.6; |
19 |
|
|
const unsigned NTRY = 50; |
20 |
|
|
|
21 |
|
|
double f1 = fn (x1, pvData), f2 = fn (x2, pvData); |
22 |
|
|
unsigned j; |
23 |
|
|
|
24 |
|
|
if (x1 == x2) |
25 |
|
|
{ |
26 |
|
|
// printf ("you have to guess an initial range"); |
27 |
|
|
return 1e8; |
28 |
|
|
} |
29 |
|
|
for (j = 1; j <= NTRY; j++) { |
30 |
|
|
if (f1*f2 < 0.) return 1; // found a root |
31 |
|
|
if (fabs (f1) < fabs (f2)) { |
32 |
|
|
x1 += FACTOR*(x1-x2); // expand towards x1 |
33 |
|
|
f1 = fn (x1, pvData); |
34 |
|
|
} |
35 |
|
|
else { |
36 |
|
|
x2 += FACTOR*(x2-x1); // ... or towards x2 |
37 |
|
|
f2 = fn (x2, pvData); |
38 |
|
|
} |
39 |
|
|
} |
40 |
|
|
return 1E8; |
41 |
|
|
} // no root bracketed |
42 |
|
|
|
43 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracOut (Function fn, double xStart, double xEnd, double &x1, double &x2, void* pvData) { |
44 |
|
|
const double FACTOR = 1.6; |
45 |
|
|
const unsigned NTRY = 50; |
46 |
|
|
|
47 |
|
|
if (x1>x2) { |
48 |
|
|
double tmp=x1; |
49 |
|
|
x1=x2; |
50 |
|
|
x2=tmp; |
51 |
|
|
} |
52 |
|
|
if (xStart>xEnd) { |
53 |
|
|
double tmp=xStart; |
54 |
|
|
xEnd=xStart; |
55 |
|
|
xEnd=tmp; |
56 |
|
|
} |
57 |
|
|
double deltaT=xEnd-xStart; |
58 |
|
|
|
59 |
|
|
if (x1 < xStart) |
60 |
|
|
x1 = xStart; |
61 |
|
|
else if (x1 > xEnd) |
62 |
|
|
x1 = xEnd; |
63 |
|
|
if (x2 < xStart) |
64 |
|
|
x2 = xStart; |
65 |
|
|
else if (x2 > xEnd) |
66 |
|
|
x2 = xEnd; |
67 |
|
|
|
68 |
|
|
if (x1 == x2) |
69 |
|
|
{ |
70 |
|
|
x1 -= .1*deltaT; |
71 |
|
|
x1 = (x1>xStart)?x1:xStart; |
72 |
|
|
x2 += .1*deltaT; |
73 |
|
|
x2 = (x2<xEnd)?x2:xEnd; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
double f1 = fn (x1, pvData), f2 = fn (x2, pvData); |
77 |
|
|
unsigned j; |
78 |
|
|
|
79 |
|
|
if (x1 == x2) |
80 |
|
|
{ |
81 |
|
|
// printf ("you have to guess an initial range"); |
82 |
|
|
return 1E8; |
83 |
|
|
} |
84 |
|
|
for (j = 1; j <= NTRY; j++) { |
85 |
|
|
if (f1*f2 < 0.) return 1; // found a root |
86 |
|
|
if (fabs (f1) < fabs (f2) && x1 > xStart ) |
87 |
|
|
{ |
88 |
|
|
if (x1+FACTOR*(x1-x2) > xStart) |
89 |
|
|
{ |
90 |
|
|
x1 += FACTOR*(x1-x2); // expand towards x1 |
91 |
|
|
} |
92 |
|
|
else |
93 |
|
|
{ |
94 |
|
|
x1 = xStart; |
95 |
|
|
} |
96 |
|
|
f1 = fn (x1, pvData); |
97 |
|
|
} |
98 |
|
|
else if (x2 < xEnd ) { |
99 |
|
|
if (x2+FACTOR*(x2-x1) < xEnd) |
100 |
|
|
{ |
101 |
|
|
x2 += FACTOR*(x2-x1); // ... or towards x2 |
102 |
|
|
} |
103 |
|
|
else |
104 |
|
|
{ |
105 |
|
|
x2 = xEnd; |
106 |
|
|
} |
107 |
|
|
f2 = fn (x2, pvData); |
108 |
|
|
} |
109 |
|
|
else |
110 |
|
|
break; |
111 |
|
|
} |
112 |
|
|
return 0; |
113 |
|
|
} // no root bracketed |
114 |
|
|
|
115 |
|
|
unsigned OT_ROOT_FIND_1D::ZeroBracIn (Function fn, const double &x1, const double &x2, |
116 |
|
|
unsigned n, double xb1[], double xb2[], unsigned nb, void* pvData) { |
117 |
|
|
unsigned i, nbb = nb; |
118 |
|
|
double x = x1, dx = (x2-x1)/n, // determine appropriate spacing |
119 |
|
|
fp = fn (x, pvData); |
120 |
|
|
|
121 |
|
|
nb = 0; |
122 |
|
|
for (i = 1; i <= n; i++) { // loop over all intervals |
123 |
|
|
double fc; |
124 |
|
|
|
125 |
|
|
x += dx; |
126 |
|
|
fc = fn (x, pvData); |
127 |
|
|
if (fc*fp < 0.) { // if a sign change occurs, record |
128 |
|
|
xb1[nb] = x-dx; // values for the bounds. |
129 |
|
|
xb2[nb] = x; |
130 |
|
|
nb++; |
131 |
|
|
} |
132 |
|
|
fp = fc; |
133 |
|
|
if (nbb == nb) return nb; |
134 |
|
|
} |
135 |
|
|
return nb; |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
|
139 |
|
|
double OT_ROOT_FIND_1D::RootBisect (Function fn, const double &x1, const double &x2, const double &xacc, void* pvData) |
140 |
|
|
{ |
141 |
|
|
const unsigned JMAX = 50; |
142 |
|
|
double fmid = fn (x2, pvData), f = fn (x1, pvData), rtbis, dx; |
143 |
|
|
unsigned j; |
144 |
|
|
|
145 |
|
|
if (fmid*f >= 0) |
146 |
|
|
{ |
147 |
|
|
// printf ("root must be bracketed for bisection"); |
148 |
|
|
return 1E308; |
149 |
|
|
} |
150 |
|
|
|
151 |
|
|
if (f < 0.) { // orient the search so that f > 0 |
152 |
|
|
rtbis = x1; // lies at x+dx. |
153 |
|
|
dx = x2-x1; |
154 |
|
|
} |
155 |
|
|
else { |
156 |
|
|
rtbis = x2; |
157 |
|
|
dx = x1-x2; |
158 |
|
|
} |
159 |
|
|
|
160 |
|
|
for (j = 1; j <= JMAX; j++) { // bisection loop |
161 |
|
|
double xmid; |
162 |
|
|
|
163 |
|
|
dx *= .5; // here we halve the interval |
164 |
|
|
xmid = rtbis+dx; // and update boundaries and |
165 |
|
|
fmid = fn (xmid, pvData); // function value |
166 |
|
|
if (fmid <= 0.) rtbis = xmid; |
167 |
|
|
if ((fabs (dx) <= xacc)||(fmid == 0.)) return rtbis; |
168 |
|
|
} |
169 |
|
|
// printf ("too many bisections"); |
170 |
|
|
return 1E308; |
171 |
|
|
} // this should happen rarely (2^-50 ~ 10^-15) |
172 |
|
|
|
173 |
|
|
|
174 |
|
|
double OT_ROOT_FIND_1D::RootFlsPos (Function fn, const double &x1, const double &x2, |
175 |
|
|
const double &xacc, void* pvData) { |
176 |
|
|
const unsigned MAXIT = 40; |
177 |
|
|
double flo = fn (x1, pvData), fhi = fn (x2, pvData), xl, xh, dx, dummy; |
178 |
|
|
unsigned j; |
179 |
|
|
|
180 |
|
|
if (flo*fhi >= 0) |
181 |
|
|
{ |
182 |
|
|
// printf ("root must be bracketed for false position"); |
183 |
|
|
return 1E308; |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
if (flo < 0.) { // let xl correspond to the low side |
187 |
|
|
xl = x1; |
188 |
|
|
xh = x2; |
189 |
|
|
} |
190 |
|
|
else { |
191 |
|
|
{ |
192 |
|
|
dummy=flo; |
193 |
|
|
flo=fhi; |
194 |
|
|
fhi=dummy; |
195 |
|
|
} |
196 |
|
|
xl = x2; |
197 |
|
|
xh = x1; |
198 |
|
|
} |
199 |
|
|
dx = xh-xl; |
200 |
|
|
|
201 |
|
|
for (j = 1; j <= MAXIT; j++) { // false position loop |
202 |
|
|
double rtflsp = xl+dx*flo/(flo-fhi),// increment w/ respect to latest |
203 |
|
|
f = fn (rtflsp, pvData), // value |
204 |
|
|
del = (f < 0.)? xl-rtflsp: xh-rtflsp; |
205 |
|
|
|
206 |
|
|
if (f < 0.) { // replace appropriate limit |
207 |
|
|
xl = rtflsp; |
208 |
|
|
flo = f; |
209 |
|
|
} |
210 |
|
|
else { |
211 |
|
|
xh = rtflsp; |
212 |
|
|
fhi = f; |
213 |
|
|
} |
214 |
|
|
dx = xh-xl; |
215 |
|
|
|
216 |
|
|
if ((fabs (del) <= xacc)||(f == 0.)) return rtflsp; |
217 |
|
|
} // convergence |
218 |
|
|
|
219 |
|
|
// printf ("RootFlsPos exceeded maximum iterations"); |
220 |
|
|
return 1E308; |
221 |
|
|
} |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
double OT_ROOT_FIND_1D::RootNewton (Function fn, Function df, |
225 |
|
|
const double &x1, const double &x2, const double &xacc, void* pvData) { |
226 |
|
|
const unsigned JMAX = 20; |
227 |
|
|
double rtnewt = .5*(x1+x2); // initial guess |
228 |
|
|
unsigned j; |
229 |
|
|
|
230 |
|
|
for (j = 1; j <= JMAX; j++) { |
231 |
|
|
double f = fn (rtnewt, pvData), fs = df (rtnewt, pvData), |
232 |
|
|
dx = f/fs; |
233 |
|
|
|
234 |
|
|
rtnewt -= dx; |
235 |
|
|
if ((x1-rtnewt)*(rtnewt-x2) < 0.) |
236 |
|
|
{ |
237 |
|
|
// printf ("jumped out of brackets"); |
238 |
|
|
return 1E308; |
239 |
|
|
} |
240 |
|
|
if (fabs (dx) < xacc) return rtnewt; |
241 |
|
|
} // convergence |
242 |
|
|
|
243 |
|
|
// printf("RootNewton exceeded maximum iterations"); |
244 |
|
|
return 1E308; |
245 |
|
|
} |
246 |
|
|
|
247 |
|
|
double OT_ROOT_FIND_1D::RootSafe (Function fn, Function df, |
248 |
|
|
const double &x1, const double &x2, const double &xacc, void* pvData) { |
249 |
|
|
const unsigned JMAX = 100; |
250 |
|
|
|
251 |
|
|
double fl = fn (x1, pvData), fh = fn (x2, pvData), xl, xh; |
252 |
|
|
|
253 |
|
|
if (fl*fh > SMALL_NUM_2) |
254 |
|
|
{ |
255 |
|
|
// printf ("root must be bracketed"); |
256 |
|
|
return 1E308; |
257 |
|
|
} |
258 |
|
|
if (fl < 0) { // orient the search so that f (xl) < 0 |
259 |
|
|
xl = x1; |
260 |
|
|
xh = x2; |
261 |
|
|
} |
262 |
|
|
else { |
263 |
|
|
xl = x2; |
264 |
|
|
xh = x1; |
265 |
|
|
} |
266 |
|
|
|
267 |
|
|
double rtsafe = .5*(x1+x2); // initial guess |
268 |
|
|
double dxold = fabs (x2-x1), |
269 |
|
|
dx = dxold; |
270 |
|
|
double f = fn (rtsafe, pvData), fp = df (rtsafe, pvData); |
271 |
|
|
|
272 |
|
|
for (unsigned j = 1; j <= JMAX; j++) { |
273 |
|
|
if ( ( ((rtsafe-xh)*fp-f)*((rtsafe-xl)*fp-f) >= 0 ) || // bisect if newton out of brackets |
274 |
|
|
( fabs (2*f) > fabs (dxold*fp) ) ) { // or not decreasing fast enough |
275 |
|
|
dxold = dx; |
276 |
|
|
dx = .5*(xh -xl); |
277 |
|
|
rtsafe = xl+dx; |
278 |
|
|
if (xl == rtsafe) return rtsafe; |
279 |
|
|
} // change in root is negligible |
280 |
|
|
else { |
281 |
|
|
dxold = dx; |
282 |
|
|
dx = f/fp; |
283 |
|
|
double temp = rtsafe; |
284 |
|
|
rtsafe -= dx; |
285 |
|
|
if (temp == rtsafe) return rtsafe; |
286 |
|
|
} |
287 |
|
|
if (fabs (dx) < xacc) return rtsafe; // convergence |
288 |
|
|
f = fn (rtsafe, pvData); |
289 |
|
|
fp = df (rtsafe, pvData); |
290 |
|
|
if (f < 0) xl = rtsafe; |
291 |
|
|
else xh = rtsafe; |
292 |
|
|
} |
293 |
|
|
// printf("too many iterations"); |
294 |
|
|
return 1E308; |
295 |
|
|
} |
296 |
|
|
|