1 |
bechet |
105 |
#include "gestionversion.h" |
2 |
francois |
259 |
#include "toibrep.h" |
3 |
francois |
104 |
#include "mg_file.h" |
4 |
|
|
#include "ot_mathematique.h" |
5 |
|
|
#include "tpl_map_entite.h" |
6 |
francois |
222 |
#include "tpl_relation_entite.h" |
7 |
francois |
104 |
#include "tpl_octree.h" |
8 |
francois |
259 |
#include "toibrep_point.h" |
9 |
francois |
106 |
#include "vct.h" |
10 |
francois |
104 |
#include <math.h> |
11 |
francois |
259 |
#include <fstream> |
12 |
francois |
262 |
#include <string> |
13 |
francois |
259 |
#include "IBrep.h" |
14 |
francois |
104 |
|
15 |
|
|
|
16 |
francois |
222 |
|
17 |
francois |
259 |
TOIBREP::TOIBREP(class MG_GESTIONNAIRE *g,class MG_GEOMETRIE *ge,class FEM_MAILLAGE* femm,int nbpas):geo(ge),gest(g),mai(femm),NPAS(nbpas) |
18 |
francois |
104 |
{ |
19 |
|
|
} |
20 |
|
|
|
21 |
|
|
|
22 |
francois |
259 |
TOIBREP::~TOIBREP() |
23 |
francois |
104 |
{ |
24 |
|
|
} |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
|
28 |
francois |
259 |
int TOIBREP::estdansletetra(FEM_TETRA *tet,double x,double y, double z) |
29 |
francois |
104 |
{ |
30 |
francois |
222 |
double *xyz1,*xyz2,*xyz3,*xyz4; |
31 |
|
|
if (tet->get_nb_fem_noeud()==4) |
32 |
|
|
{ |
33 |
|
|
xyz1=tet->get_fem_noeud(0)->get_coord(); |
34 |
|
|
xyz2=tet->get_fem_noeud(1)->get_coord(); |
35 |
|
|
xyz3=tet->get_fem_noeud(2)->get_coord(); |
36 |
|
|
xyz4=tet->get_fem_noeud(3)->get_coord(); |
37 |
|
|
} |
38 |
|
|
if (tet->get_nb_fem_noeud()==10) |
39 |
|
|
{ |
40 |
|
|
xyz1=tet->get_fem_noeud(0)->get_coord(); |
41 |
|
|
xyz2=tet->get_fem_noeud(2)->get_coord(); |
42 |
|
|
xyz3=tet->get_fem_noeud(4)->get_coord(); |
43 |
|
|
xyz4=tet->get_fem_noeud(9)->get_coord(); |
44 |
|
|
} |
45 |
francois |
104 |
OT_VECTEUR_3D v1(xyz2[0]-xyz1[0],xyz2[1]-xyz1[1],xyz2[2]-xyz1[2]); |
46 |
|
|
OT_VECTEUR_3D v2(xyz3[0]-xyz1[0],xyz3[1]-xyz1[1],xyz3[2]-xyz1[2]); |
47 |
|
|
OT_VECTEUR_3D v3(xyz4[0]-xyz1[0],xyz4[1]-xyz1[1],xyz4[2]-xyz1[2]); |
48 |
|
|
OT_VECTEUR_3D v4(x-xyz1[0],y-xyz1[1],z-xyz1[2]); |
49 |
|
|
OT_MATRICE_3D mat(v1,v2,v3); |
50 |
|
|
OT_MATRICE_3D mat1(v4,v2,v3); |
51 |
|
|
OT_MATRICE_3D mat2(v1,v4,v3); |
52 |
|
|
OT_MATRICE_3D mat3(v1,v2,v4); |
53 |
|
|
double det=mat.get_determinant(); |
54 |
|
|
double xsi=mat1.get_determinant()/det; |
55 |
|
|
double eta=mat2.get_determinant()/det; |
56 |
|
|
double dseta=mat3.get_determinant()/det; |
57 |
|
|
int reponse=1; |
58 |
|
|
if (xsi<-0.000001) reponse=0; |
59 |
|
|
if (eta<-0.000001) reponse=0; |
60 |
|
|
if (dseta<-0.000001) reponse=0; |
61 |
|
|
if (xsi+eta+dseta>1.000001) reponse=0; |
62 |
|
|
return reponse; |
63 |
|
|
|
64 |
|
|
} |
65 |
|
|
|
66 |
francois |
259 |
double TOIBREP::calculdist(double *n,double x,double y,double z,FEM_NOEUD* noeud) |
67 |
francois |
104 |
{ |
68 |
|
|
double* xyz=noeud->get_coord(); |
69 |
|
|
double dist=sqrt((xyz[0]-x)*(xyz[0]-x)+(xyz[1]-y)*(xyz[1]-y)+(xyz[2]-z)*(xyz[2]-z)); |
70 |
|
|
OT_VECTEUR_3D vec1(n[0],n[1],n[2]); |
71 |
|
|
OT_VECTEUR_3D vec2(xyz[0]-x,xyz[1]-y,xyz[2]-z); |
72 |
|
|
double ps=vec1*vec2; |
73 |
|
|
if (ps<0.) dist=-dist; |
74 |
|
|
return dist; |
75 |
|
|
} |
76 |
|
|
|
77 |
francois |
259 |
//void TOIBREP::importer(std::string nomfichier,class MagXchange* data,std::string nomfichierout) |
78 |
|
|
void TOIBREP::importer(std::string nomfichier,std::string nomfichieribrep,MG_GROUPE_TOPOLOGIQUE* mggt) |
79 |
francois |
104 |
{ |
80 |
francois |
222 |
TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*> lst; |
81 |
francois |
106 |
int nbface=geo->get_nb_mg_face(); |
82 |
francois |
222 |
if (mggt!=NULL) |
83 |
|
|
{ |
84 |
|
|
int nb=mggt->get_nb(); |
85 |
|
|
for (int i=0;i<nb;i++) |
86 |
|
|
{ |
87 |
|
|
lst.ajouter(mggt->get(i)); |
88 |
|
|
mggt->get(i)->get_topologie_sousjacente(&lst); |
89 |
|
|
} |
90 |
|
|
} |
91 |
|
|
else |
92 |
|
|
{ |
93 |
|
|
int nbvol=geo->get_nb_mg_volume(); |
94 |
|
|
for (int i=0;i<nbvol;i++) |
95 |
|
|
{ |
96 |
|
|
lst.ajouter(geo->get_mg_volume(i)); |
97 |
|
|
geo->get_mg_volume(i)->get_topologie_sousjacente(&lst); |
98 |
|
|
} |
99 |
|
|
} |
100 |
|
|
int nbvraiface=0; |
101 |
|
|
TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*>::ITERATEUR it; |
102 |
|
|
for (MG_ELEMENT_TOPOLOGIQUE* ele=lst.get_premier(it);ele!=NULL;ele=lst.get_suivant(it)) |
103 |
|
|
if (ele->get_dimension()==2) nbvraiface++; |
104 |
|
|
int nb_noeud=mai->get_nb_fem_noeud(); |
105 |
francois |
104 |
std::string nomfichier2=nomfichier+".sol"; |
106 |
francois |
222 |
FEM_SOLUTION* solution=new FEM_SOLUTION(mai,nbvraiface+1,(char*)nomfichier2.c_str(),nb_noeud,"LS_",ENTITE_NOEUD); |
107 |
francois |
106 |
solution->change_legende(0,"Peau"); |
108 |
francois |
222 |
int i=0; |
109 |
|
|
for (MG_ELEMENT_TOPOLOGIQUE* ele=lst.get_premier(it);ele!=NULL;ele=lst.get_suivant(it)) |
110 |
francois |
106 |
{ |
111 |
francois |
222 |
if (ele->get_dimension()!=2) continue; |
112 |
|
|
if (mggt!=NULL) |
113 |
|
|
if (lst.existe(ele)==0) continue; |
114 |
francois |
106 |
char mess[255]; |
115 |
francois |
262 |
sprintf(mess,"F %lu",ele->get_id()); |
116 |
francois |
222 |
++i; |
117 |
|
|
solution->change_legende(i,mess); |
118 |
francois |
106 |
} |
119 |
francois |
222 |
gest->ajouter_fem_solution(solution); |
120 |
francois |
104 |
double xmin=1e300,ymin=1e300,zmin=1e308; |
121 |
|
|
double xmax=-1e300,ymax=-1e300,zmax=-1e308; |
122 |
francois |
222 |
TPL_MAP_ENTITE<FEM_NOEUD*> lst_noeud; |
123 |
|
|
LISTE_FEM_NOEUD::iterator it2; |
124 |
|
|
i=0; |
125 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(it2);noeud!=NULL;noeud=mai->get_suivant_noeud(it2)) |
126 |
francois |
104 |
{ |
127 |
|
|
double* xyz=noeud->get_coord(); |
128 |
|
|
if (xyz[0]<xmin) xmin=xyz[0]; |
129 |
|
|
if (xyz[1]<ymin) ymin=xyz[1]; |
130 |
|
|
if (xyz[2]<zmin) zmin=xyz[2]; |
131 |
|
|
if (xyz[0]>xmax) xmax=xyz[0]; |
132 |
|
|
if (xyz[1]>ymax) ymax=xyz[1]; |
133 |
|
|
if (xyz[2]>zmax) zmax=xyz[2]; |
134 |
francois |
222 |
for (int j=0;j<nbvraiface+1;j++) |
135 |
francois |
106 |
solution->ecrire(i,j,1e300); |
136 |
francois |
104 |
lst_noeud.ajouter(noeud); |
137 |
francois |
222 |
i++; |
138 |
francois |
104 |
} |
139 |
|
|
octree.initialiser(&lst_noeud,1,xmin,ymin,zmin,xmax,ymax,zmax); |
140 |
francois |
222 |
LISTE_FEM_TETRA::iterator it3; |
141 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(it3);tet!=NULL;tet=mai->get_suivant_tetra(it3)) |
142 |
francois |
104 |
octree.inserer(tet); |
143 |
francois |
222 |
//levelset0(solution,0); |
144 |
francois |
106 |
for (int i=0;i<nbface;i++) |
145 |
|
|
{ |
146 |
francois |
222 |
MG_FACE* face=geo->get_mg_face(i); |
147 |
|
|
if (!lst.existe(face)) continue; |
148 |
francois |
106 |
vector<MG_FACE*> lstface; |
149 |
francois |
222 |
lstface.push_back(face); |
150 |
|
|
/*TPL_LISTE_ENTITE<double> lst; |
151 |
francois |
106 |
int type=face->get_surface()->get_type_geometrique(lst); |
152 |
|
|
int idem=0; |
153 |
|
|
for (int j=0;j<i;j++) |
154 |
|
|
{ |
155 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
156 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
157 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
158 |
|
|
if (type==type2) |
159 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
160 |
|
|
{ |
161 |
|
|
int diff=0; |
162 |
|
|
for (int i=0;i<lst.get_nb();i++) |
163 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
164 |
|
|
if (diff==0) idem=1; |
165 |
|
|
} |
166 |
|
|
} |
167 |
|
|
if (!idem) lstface.push_back(geo->get_mg_face(i)); |
168 |
|
|
for (int j=i+1;j<nbface;j++) |
169 |
|
|
{ |
170 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
171 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
172 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
173 |
|
|
if (type==type2) |
174 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
175 |
|
|
{ |
176 |
|
|
int diff=0; |
177 |
|
|
for (int i=0;i<lst.get_nb();i++) |
178 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
179 |
|
|
if (diff==0) lstface.push_back(face2); |
180 |
|
|
} |
181 |
francois |
222 |
}*/ |
182 |
|
|
levelsetn(&lst,&lstface,solution,i+1); |
183 |
francois |
106 |
} |
184 |
francois |
259 |
exporter_IBrep(nomfichieribrep,solution,mggt); |
185 |
francois |
106 |
} |
186 |
|
|
|
187 |
francois |
259 |
void TOIBREP::levelset0(FEM_SOLUTION *solution,int numsol) |
188 |
francois |
106 |
{ |
189 |
|
|
solution->active_solution(numsol); |
190 |
francois |
104 |
int nbface=geo->get_nb_mg_face(); |
191 |
francois |
259 |
vector<TOIBREP_POINT*> lst; |
192 |
francois |
104 |
for (int iface=0;iface<nbface;iface++) |
193 |
|
|
{ |
194 |
francois |
106 |
MG_FACE* face=geo->get_mg_face(iface); |
195 |
|
|
int nbpoint=lst.size(); |
196 |
francois |
104 |
TPL_SET<MG_ELEMENT_MAILLAGE*>::ITERATEUR it; |
197 |
|
|
for (MG_ELEMENT_MAILLAGE* ele=face->get_lien_maillage()->get_premier(it);ele!=NULL;ele=face->get_lien_maillage()->get_suivant(it)) |
198 |
|
|
{ |
199 |
|
|
MG_TRIANGLE *tri=(MG_TRIANGLE*)ele; |
200 |
francois |
259 |
TOIBREP_POINT *pt1=new TOIBREP_POINT(tri->get_noeud1()->get_x(),tri->get_noeud1()->get_y(),tri->get_noeud1()->get_z(),tri->get_noeud1()->get_lien_topologie()); |
201 |
|
|
TOIBREP_POINT *pt2=new TOIBREP_POINT(tri->get_noeud2()->get_x(),tri->get_noeud2()->get_y(),tri->get_noeud2()->get_z(),tri->get_noeud2()->get_lien_topologie()); |
202 |
|
|
TOIBREP_POINT *pt3=new TOIBREP_POINT(tri->get_noeud3()->get_x(),tri->get_noeud3()->get_y(),tri->get_noeud3()->get_z(),tri->get_noeud3()->get_lien_topologie()); |
203 |
francois |
106 |
lst.push_back(pt1); |
204 |
|
|
lst.push_back(pt2); |
205 |
|
|
lst.push_back(pt3); |
206 |
francois |
104 |
} |
207 |
francois |
222 |
calcullevelsetpremierepasse(solution,numsol,face,8,&lst,nbpoint,lst.size()); |
208 |
francois |
106 |
} |
209 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
210 |
|
|
} |
211 |
francois |
259 |
void TOIBREP::calcullevelsetpremierepasse(FEM_SOLUTION *solution,int numsol,MG_FACE* face,int sens,vector<TOIBREP_POINT*> *lst,int n1,int n2) |
212 |
francois |
106 |
{ |
213 |
|
|
for (int i=n1;i<n2;i++) |
214 |
francois |
104 |
{ |
215 |
francois |
259 |
TOIBREP_POINT* pt=(*lst)[i]; |
216 |
francois |
104 |
double uv[2]; |
217 |
francois |
106 |
double xyz[3]; |
218 |
|
|
pt->get_coord3(xyz); |
219 |
francois |
222 |
double normal[3]; |
220 |
francois |
104 |
face->inverser(uv,xyz); |
221 |
|
|
face->calcul_normale_unitaire(uv,normal); |
222 |
francois |
222 |
normal[0]=normal[0]*sens*(-1.); |
223 |
|
|
normal[1]=normal[1]*sens*(-1.); |
224 |
|
|
normal[2]=normal[2]*sens*(-1.); |
225 |
|
|
TPL_MAP_ENTITE<FEM_TETRA*> liste; |
226 |
francois |
259 |
octree.rechercher(xyz[0],xyz[1],xyz[2],0.,liste); |
227 |
francois |
222 |
TPL_MAP_ENTITE<FEM_TETRA*>::ITERATEUR it; |
228 |
|
|
for (FEM_TETRA* tet=liste.get_premier(it);tet!=NULL;tet=liste.get_suivant(it)) |
229 |
francois |
104 |
{ |
230 |
francois |
249 |
//if (estdansletetra(tet,xyz[0],xyz[1],xyz[2])) |
231 |
francois |
104 |
{ |
232 |
francois |
222 |
for (int k=0;k<tet->get_nb_fem_noeud();k++) |
233 |
francois |
106 |
{ |
234 |
francois |
222 |
double dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_fem_noeud(k)); |
235 |
|
|
if (fabs(dist)<fabs(tet->get_fem_noeud(k)->get_solution())) |
236 |
|
|
{ |
237 |
|
|
tet->get_fem_noeud(k)->change_solution(dist); |
238 |
|
|
tet->get_fem_noeud(k)->change_numero(pt->get_id()); |
239 |
|
|
pt->change_coord2(uv); |
240 |
|
|
} |
241 |
francois |
106 |
} |
242 |
francois |
104 |
} |
243 |
|
|
} |
244 |
|
|
} |
245 |
francois |
106 |
} |
246 |
|
|
|
247 |
francois |
259 |
void TOIBREP::calcullevelsetdeuxiemepasse(FEM_SOLUTION *solution,int numsol,vector<TOIBREP_POINT*> *lst) |
248 |
francois |
106 |
{ |
249 |
francois |
222 |
LISTE_FEM_TETRA::iterator ittet; |
250 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
251 |
francois |
106 |
{ |
252 |
francois |
222 |
for (int i=0;i<tet->get_nb_fem_noeud();i++) |
253 |
|
|
if (tet->get_fem_noeud(i)->get_solution()<1e250) |
254 |
francois |
106 |
{ |
255 |
francois |
259 |
TOIBREP_POINT* pt=(*lst)[tet->get_fem_noeud(i)->get_numero()]; |
256 |
francois |
106 |
int dim=pt->get_mg_element_topologique()->get_dimension(); |
257 |
|
|
if (dim==2) |
258 |
|
|
{ |
259 |
|
|
MG_FACE* face=(MG_FACE*)pt->get_mg_element_topologique(); |
260 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),face,pt); |
261 |
francois |
106 |
int signe=1; |
262 |
francois |
222 |
if (tet->get_fem_noeud(i)->get_solution()<0) signe=-1; |
263 |
|
|
tet->get_fem_noeud(i)->change_solution(signe*dist); |
264 |
francois |
106 |
} |
265 |
|
|
if (dim==1) |
266 |
|
|
{ |
267 |
|
|
MG_ARETE* arete=(MG_ARETE*)pt->get_mg_element_topologique(); |
268 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),arete,pt); |
269 |
|
|
tet->get_fem_noeud(i)->change_solution(dist); |
270 |
francois |
106 |
} |
271 |
|
|
if (dim==0) |
272 |
|
|
{ |
273 |
|
|
MG_SOMMET* sommet=(MG_SOMMET*)pt->get_mg_element_topologique(); |
274 |
|
|
MG_ARETE* arete=sommet->get_mg_cosommet(0)->get_arete(); |
275 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),arete,pt); |
276 |
|
|
tet->get_fem_noeud(i)->change_solution(dist); |
277 |
francois |
106 |
} |
278 |
|
|
|
279 |
|
|
} |
280 |
francois |
104 |
} |
281 |
francois |
222 |
int i=0; |
282 |
|
|
LISTE_FEM_NOEUD::iterator itnoeud; |
283 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
284 |
francois |
104 |
{ |
285 |
francois |
106 |
solution->ecrire(i,numsol,noeud->get_solution()); |
286 |
francois |
222 |
++i; |
287 |
francois |
104 |
} |
288 |
francois |
106 |
int nbpt=(*lst).size(); |
289 |
|
|
for (int i=0;i<nbpt;i++) delete (*lst)[i]; |
290 |
francois |
259 |
TOIBREP_POINT::remisecompteurid(); |
291 |
francois |
104 |
|
292 |
francois |
106 |
} |
293 |
|
|
|
294 |
francois |
259 |
double TOIBREP::calcul_distance(FEM_NOEUD* noeud,MG_ARETE* are,TOIBREP_POINT* pt,double precision) |
295 |
francois |
106 |
{ |
296 |
|
|
double tii,eps; |
297 |
|
|
are->inverser(tii,noeud->get_coord()); |
298 |
|
|
int compteur=0; |
299 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
300 |
|
|
do |
301 |
|
|
{ |
302 |
|
|
compteur++; |
303 |
|
|
double ti=tii; |
304 |
|
|
double xyz[3],dxyz[3],ddxyz[3]; |
305 |
|
|
are->deriver_seconde(ti,ddxyz,dxyz,xyz); |
306 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
307 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz[0],dxyz[1],dxyz[2]); |
308 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz[0],ddxyz[1],ddxyz[2]); |
309 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
310 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
311 |
|
|
eps=fabs(tii-ti); |
312 |
|
|
if (compteur>500) return 1e300; |
313 |
|
|
if (tii<are->get_tmin()) |
314 |
|
|
{ |
315 |
|
|
tii=are->get_tmin(); |
316 |
|
|
eps=0.; |
317 |
|
|
} |
318 |
|
|
if (tii>are->get_tmax()) |
319 |
|
|
{ |
320 |
|
|
tii=are->get_tmax(); |
321 |
|
|
eps=0.; |
322 |
|
|
} |
323 |
|
|
} |
324 |
|
|
while (eps>precision); |
325 |
|
|
double xyz[3],dxyz[3]; |
326 |
|
|
are->evaluer(tii,xyz); |
327 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
328 |
|
|
double distance=(Ct-Pt).get_longueur(); |
329 |
|
|
MG_FACE* face1=are->get_mg_coarete(0)->get_boucle()->get_mg_face(); |
330 |
|
|
MG_FACE* face2=are->get_mg_coarete(1)->get_boucle()->get_mg_face(); |
331 |
|
|
are->deriver(tii,dxyz); |
332 |
|
|
OT_VECTEUR_3D x1(dxyz[0],dxyz[1],dxyz[2]); |
333 |
|
|
OT_VECTEUR_3D x2(dxyz[0],dxyz[1],dxyz[2]); |
334 |
|
|
x1=are->get_mg_coarete(0)->get_orientation()*x1; |
335 |
|
|
x2=are->get_mg_coarete(1)->get_orientation()*x2; |
336 |
|
|
x1.norme(); |
337 |
|
|
x2.norme(); |
338 |
|
|
double uv1[2],uv2[2]; |
339 |
|
|
double normal1[3],normal2[3]; |
340 |
|
|
face1->inverser(uv1,xyz); |
341 |
|
|
face2->inverser(uv2,xyz); |
342 |
|
|
face1->calcul_normale_unitaire(uv1,normal1); |
343 |
|
|
face2->calcul_normale_unitaire(uv2,normal2); |
344 |
|
|
OT_VECTEUR_3D z1(normal1[0],normal1[1],normal1[2]); |
345 |
|
|
OT_VECTEUR_3D z2(normal2[0],normal2[1],normal2[2]); |
346 |
|
|
z1=face1->get_mg_coface(0)->get_orientation()*z1; |
347 |
|
|
z2=face2->get_mg_coface(0)->get_orientation()*z2; |
348 |
|
|
OT_VECTEUR_3D y1=z1&x1; |
349 |
|
|
OT_VECTEUR_3D y2=z2&x2; |
350 |
|
|
double test=(z1&z2)*x1; |
351 |
|
|
int signe=-1; |
352 |
|
|
OT_VECTEUR_3D dirpt=Pt-Ct; |
353 |
|
|
if (test>0) |
354 |
|
|
{if ((z1*dirpt>0.) || (z2*dirpt>0.)) signe=1;} |
355 |
|
|
else |
356 |
|
|
{if ((z1*dirpt>0.) && (z2*dirpt>0.)) signe=1;} |
357 |
|
|
return signe*distance; |
358 |
|
|
} |
359 |
|
|
|
360 |
francois |
259 |
double TOIBREP::calcul_distance(FEM_NOEUD* noeud,MG_FACE* face,TOIBREP_POINT* pt,double precision) |
361 |
francois |
106 |
{ |
362 |
|
|
double uvii[2],eps; |
363 |
|
|
pt->get_coord2(uvii); |
364 |
|
|
int compteur=0; |
365 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
366 |
|
|
double delta_u,delta_v; |
367 |
|
|
do |
368 |
|
|
{ |
369 |
|
|
compteur++; |
370 |
|
|
double uvi[2]; |
371 |
|
|
uvi[0]=uvii[0]; |
372 |
|
|
uvi[1]=uvii[1]; |
373 |
|
|
double xyzduu[3],xyzdvv[3],xyzduv[3],xyzdu[3],xyzdv[3],xyz[3]; |
374 |
|
|
face->deriver_seconde(uvi,xyzduu,xyzduv,xyzdvv,xyz,xyzdu,xyzdv); |
375 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
376 |
|
|
OT_VECTEUR_3D Su(xyzdu[0],xyzdu[1],xyzdu[2]); |
377 |
|
|
OT_VECTEUR_3D Sv(xyzdv[0],xyzdv[1],xyzdv[2]); |
378 |
|
|
OT_VECTEUR_3D Suu(xyzduu[0],xyzduu[1],xyzduu[2]); |
379 |
|
|
OT_VECTEUR_3D Suv(xyzduv[0],xyzduv[1],xyzduv[2]); |
380 |
|
|
OT_VECTEUR_3D Svv(xyzdvv[0],xyzdvv[1],xyzdvv[2]); |
381 |
|
|
OT_VECTEUR_3D Distance = S-Pt; |
382 |
|
|
double a[4],b[2]; |
383 |
|
|
a[0]=Su.get_longueur2()+Distance*Suu; |
384 |
|
|
a[1]=Su*Sv+Distance*Suv; |
385 |
|
|
a[2]=Su*Sv+Distance*Suv; |
386 |
|
|
a[3]=Sv.get_longueur2()+Distance*Svv; |
387 |
|
|
b[0]=Distance*Su;b[0]=-b[0]; |
388 |
|
|
b[1]=Distance*Sv;b[1]=-b[1]; |
389 |
|
|
double deltau,deltav; |
390 |
|
|
double denominateur_delta=(a[0]*a[3]-a[2]*a[1]); |
391 |
|
|
if (a[0]<1E-12) |
392 |
|
|
deltau=0; |
393 |
|
|
else delta_u=(b[0]*a[3]-b[1]*a[1])/denominateur_delta; |
394 |
|
|
if (a[3]<1E-12) |
395 |
|
|
deltav=0; |
396 |
|
|
else delta_v=(a[0]*b[1]-a[2]*b[0])/denominateur_delta; |
397 |
|
|
/*if (fabs(denominateur_delta) < ( (fabs(a[0])+fabs(a[1])+fabs(a[2])+fabs(a[3]))*1e-12 ) ) |
398 |
|
|
return 1e300;*/ |
399 |
|
|
uvii[0]=uvi[0]+delta_u; |
400 |
|
|
uvii[1]=uvi[1]+delta_v; |
401 |
|
|
if (face->get_surface()->est_periodique_u()==1) |
402 |
|
|
{ |
403 |
|
|
if(uvii[0]<0.) uvii[0]=face->get_surface()->get_periode_u()-uvii[0]; |
404 |
|
|
if(uvii[0]>face->get_surface()->get_periode_u()) uvii[0]=uvii[0]-face->get_surface()->get_periode_u(); |
405 |
|
|
} |
406 |
|
|
if (face->get_surface()->est_periodique_v()==1) |
407 |
|
|
{ |
408 |
|
|
if(uvii[1]<0.) uvii[0]=face->get_surface()->get_periode_v()-uvii[1]; |
409 |
|
|
if(uvii[1]>face->get_surface()->get_periode_v()) uvii[1]=uvii[1]-face->get_surface()->get_periode_v(); |
410 |
|
|
} |
411 |
|
|
delta_u=uvii[0]-uvi[0]; |
412 |
|
|
delta_v=uvii[1]-uvi[1]; |
413 |
|
|
if (compteur>500) return 1e300; |
414 |
|
|
} |
415 |
|
|
|
416 |
|
|
while ((fabs(delta_u)>precision)||(fabs(delta_v)>precision)); |
417 |
|
|
double xyz[3]; |
418 |
|
|
face->evaluer(uvii,xyz); |
419 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
420 |
|
|
double distance=(S-Pt).get_longueur(); |
421 |
|
|
return distance; |
422 |
|
|
} |
423 |
|
|
|
424 |
francois |
259 |
void TOIBREP::levelsetn(TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*> *lsttopo,vector<MG_FACE*> *lstface,class FEM_SOLUTION* solution,int numsol) |
425 |
francois |
106 |
{ |
426 |
|
|
solution->active_solution(numsol); |
427 |
|
|
int nbface=lstface->size(); |
428 |
|
|
if (nbface==0) return; |
429 |
francois |
259 |
vector<TOIBREP_POINT*> lst; |
430 |
francois |
222 |
BOITE_2D boite=ot.get_boite_2D((*lstface)[0]); |
431 |
|
|
for (int iface=1;iface<nbface;iface++) |
432 |
francois |
104 |
{ |
433 |
francois |
222 |
MG_FACE* face=(*lstface)[iface]; |
434 |
|
|
BOITE_2D boiteface=ot.get_boite_2D(face); |
435 |
|
|
boite=boite+boiteface; |
436 |
|
|
} |
437 |
|
|
MG_FACE* face=(*lstface)[0]; |
438 |
|
|
int trouve=0; |
439 |
|
|
int orientation; |
440 |
|
|
int j=0; |
441 |
|
|
do |
442 |
|
|
{ |
443 |
|
|
MG_COFACE* coface=face->get_mg_coface(j); |
444 |
|
|
MG_VOLUME* vol=coface->get_coquille()->get_mg_volume(); |
445 |
|
|
if (lsttopo->existe(vol)) |
446 |
francois |
104 |
{ |
447 |
francois |
222 |
orientation=coface->get_orientation(); |
448 |
|
|
trouve=1; |
449 |
francois |
106 |
} |
450 |
francois |
222 |
j++; |
451 |
francois |
104 |
} |
452 |
francois |
222 |
while (trouve==0); |
453 |
|
|
double umin=boite.get_xmin(); |
454 |
|
|
double umax=boite.get_xmax(); |
455 |
|
|
double vmin=boite.get_ymin(); |
456 |
|
|
double vmax=boite.get_ymax(); |
457 |
francois |
106 |
if (face->get_surface()->est_periodique_u()) |
458 |
francois |
104 |
{ |
459 |
francois |
106 |
umin=0; |
460 |
|
|
umax=face->get_surface()->get_periode_u(); |
461 |
francois |
104 |
} |
462 |
francois |
106 |
if (face->get_surface()->est_periodique_v()) |
463 |
|
|
{ |
464 |
|
|
vmin=0; |
465 |
|
|
vmax=face->get_surface()->get_periode_v(); |
466 |
|
|
} |
467 |
|
|
for (int i=-5;i<NPAS+5;i++) |
468 |
|
|
for (int j=-5;j<NPAS+5;j++) |
469 |
|
|
{ |
470 |
francois |
222 |
double uv[2]; |
471 |
francois |
106 |
uv[0]=umin+i*1.0/NPAS*(umax-umin); |
472 |
|
|
uv[1]=vmin+j*1.0/NPAS*(vmax-vmin); |
473 |
|
|
double xyz[3]; |
474 |
|
|
if ((face->valide_parametre_u(uv[0])) && (face->valide_parametre_u(uv[1]))) |
475 |
|
|
{ |
476 |
|
|
face->evaluer(uv,xyz); |
477 |
francois |
259 |
TOIBREP_POINT *pt=new TOIBREP_POINT(xyz[0],xyz[1],xyz[2],face); |
478 |
francois |
106 |
lst.push_back(pt); |
479 |
|
|
} |
480 |
|
|
} |
481 |
francois |
222 |
calcullevelsetpremierepasse(solution,numsol,face,orientation,&lst,0,lst.size()); |
482 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
483 |
francois |
249 |
//etendrelevelset(solution,numsol); |
484 |
francois |
104 |
} |
485 |
francois |
106 |
|
486 |
francois |
259 |
void TOIBREP::etendrelevelset(FEM_SOLUTION* sol,int numsol) |
487 |
francois |
222 |
{ |
488 |
|
|
sol->active_solution(numsol); |
489 |
|
|
|
490 |
|
|
|
491 |
|
|
LISTE_FM know; |
492 |
|
|
LISTE_FM trial; |
493 |
|
|
LISTE_FM far; |
494 |
|
|
LISTE_FM exterieur; |
495 |
|
|
LISTE_FM_TRI trialtri; |
496 |
|
|
LISTE_FM_TRI_ID trialtriid; |
497 |
|
|
|
498 |
|
|
|
499 |
|
|
LISTE_FEM_TETRA::iterator ittet; |
500 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
501 |
|
|
{ |
502 |
|
|
tet->change_solution(0.); |
503 |
|
|
int numsol=0; |
504 |
|
|
if (tet->get_fem_noeud(0)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(0)->change_numero(1);} else tet->get_fem_noeud(0)->change_numero(0); |
505 |
|
|
if (tet->get_fem_noeud(1)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(1)->change_numero(1);} else tet->get_fem_noeud(1)->change_numero(0); |
506 |
|
|
if (tet->get_fem_noeud(2)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(2)->change_numero(1);} else tet->get_fem_noeud(2)->change_numero(0); |
507 |
|
|
if (tet->get_fem_noeud(3)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(3)->change_numero(1);} else tet->get_fem_noeud(3)->change_numero(0); |
508 |
|
|
if (numsol==4) |
509 |
|
|
ajouter_liste(know,tet); |
510 |
|
|
|
511 |
|
|
else if (numsol==3) |
512 |
|
|
{ |
513 |
|
|
if (tet->get_fem_noeud(0)->get_numero()==0) tet->change_numero(0); |
514 |
|
|
else if (tet->get_fem_noeud(1)->get_numero()==0) tet->change_numero(1); |
515 |
|
|
else if (tet->get_fem_noeud(2)->get_numero()==0) tet->change_numero(2); |
516 |
|
|
else tet->change_numero(3); |
517 |
|
|
ajouter_liste(trial,tet); |
518 |
|
|
} |
519 |
|
|
else |
520 |
|
|
ajouter_liste(far,tet); |
521 |
|
|
|
522 |
|
|
} |
523 |
|
|
for (LISTE_FM::iterator i=trial.begin();i!=trial.end();i++) |
524 |
|
|
{ |
525 |
|
|
FEM_TETRA* tet=*i; |
526 |
|
|
int signe; |
527 |
|
|
double sol=resoudgradT(tet,&signe); |
528 |
|
|
if (fabs(sol)>0.00000001) |
529 |
|
|
{ |
530 |
|
|
if (fabs(sol)<fabs(tet->get_fem_noeud(tet->get_numero())->get_solution())) |
531 |
|
|
{ |
532 |
|
|
tet->get_fem_noeud(tet->get_numero())->change_solution(sol); |
533 |
|
|
ajouter_liste(trialtri,trialtriid,tet,fabs(tet->get_fem_noeud(tet->get_numero())->get_solution())); |
534 |
|
|
} |
535 |
|
|
} |
536 |
|
|
else |
537 |
|
|
{ |
538 |
|
|
ajouter_liste(exterieur,tet); |
539 |
|
|
tet->change_solution(1e300); |
540 |
|
|
} |
541 |
|
|
} |
542 |
|
|
int fin=0; |
543 |
|
|
LISTE_FM_TRI::iterator itfin=trialtri.end(); |
544 |
|
|
itfin--; |
545 |
|
|
double longref=(*itfin).first; |
546 |
|
|
do |
547 |
|
|
{ |
548 |
|
|
LISTE_FM_TRI::iterator it=trialtri.begin(); |
549 |
|
|
FEM_TETRA* tet=(*it).second; |
550 |
|
|
double longcourant=(*it).first; |
551 |
|
|
supprimer_liste(trialtri,trialtriid,tet); |
552 |
|
|
ajouter_liste(know,tet); |
553 |
|
|
FEM_NOEUD* noeud=tet->get_fem_noeud(tet->get_numero()); |
554 |
|
|
noeud->change_numero(1); |
555 |
|
|
if (noeud->get_solution()>20000) |
556 |
|
|
cout << "BUGGGGGGG" <<endl; |
557 |
|
|
int nbtetra=noeud->get_lien_tetra()->get_nb(); |
558 |
|
|
for (int i=0;i<nbtetra;i++) |
559 |
|
|
{ |
560 |
|
|
FEM_TETRA* tet2=noeud->get_lien_tetra()->get(i); |
561 |
|
|
if (tet2==tet) continue; |
562 |
|
|
LISTE_FM_TRI_ID::iterator it=trialtriid.find(tet2->get_id()); |
563 |
|
|
if (it!=trialtriid.end()) |
564 |
|
|
{ |
565 |
|
|
int signe; |
566 |
|
|
double sol=resoudgradT(tet2,&signe); |
567 |
|
|
double solution=tet2->get_fem_noeud(tet2->get_numero())->get_solution(); |
568 |
|
|
if (fabs(sol)>0.00000001) |
569 |
|
|
if (!((solution<1e200)&&(sol*solution<0))) |
570 |
|
|
if (fabs(sol)<fabs(solution)) |
571 |
|
|
{ |
572 |
|
|
supprimer_liste(trialtri,trialtriid,tet2); |
573 |
|
|
ajouter_liste(trialtri,trialtriid,tet2,fabs(sol)); |
574 |
|
|
tet2->get_fem_noeud(tet2->get_numero())->change_solution(sol); |
575 |
|
|
} |
576 |
|
|
} |
577 |
|
|
LISTE_FM::iterator it2=find(far.begin(),far.end(),tet2); |
578 |
|
|
if (it2!=far.end()) |
579 |
|
|
{ |
580 |
|
|
int numsol=0; |
581 |
|
|
if (tet2->get_fem_noeud(0)->get_numero()==1) numsol++; |
582 |
|
|
if (tet2->get_fem_noeud(1)->get_numero()==1) numsol++; |
583 |
|
|
if (tet2->get_fem_noeud(2)->get_numero()==1) numsol++; |
584 |
|
|
if (tet2->get_fem_noeud(3)->get_numero()==1) numsol++; |
585 |
|
|
//if (numsol==4) |
586 |
|
|
//cout << " BUG " <<endl; |
587 |
|
|
if (numsol==3) |
588 |
|
|
{ |
589 |
|
|
if (tet2->get_fem_noeud(0)->get_numero()==0) tet2->change_numero(0); |
590 |
|
|
else if (tet2->get_fem_noeud(1)->get_numero()==0) tet2->change_numero(1); |
591 |
|
|
else if (tet2->get_fem_noeud(2)->get_numero()==0) tet2->change_numero(2); |
592 |
|
|
else tet2->change_numero(3); |
593 |
|
|
int signe; |
594 |
|
|
double sol=resoudgradT(tet2,&signe); |
595 |
|
|
double ancsol=tet2->get_fem_noeud(tet2->get_numero())->get_solution(); |
596 |
|
|
if (fabs(sol)>0.00000001) |
597 |
|
|
{ |
598 |
|
|
if (!((ancsol<1e200) && (ancsol*sol<0.) )) |
599 |
|
|
{ |
600 |
|
|
tet2->get_fem_noeud(tet2->get_numero())->change_solution(sol); |
601 |
|
|
supprimer_liste(far,tet2); |
602 |
|
|
ajouter_liste(trialtri,trialtriid,tet2,fabs(sol)); |
603 |
|
|
} |
604 |
|
|
} |
605 |
|
|
else |
606 |
|
|
{ |
607 |
|
|
tet2->change_solution(1e300); |
608 |
|
|
ajouter_liste(exterieur,tet2); |
609 |
|
|
} |
610 |
|
|
} |
611 |
|
|
} |
612 |
|
|
} |
613 |
|
|
if (trialtri.size()==0) fin=1; |
614 |
|
|
if (exterieur.size()>0) |
615 |
|
|
if (fin==0) |
616 |
|
|
if (longcourant>longref) |
617 |
|
|
{ |
618 |
|
|
int nombre=exterieur.size(); |
619 |
|
|
for (int i=0;i<nombre;i++) |
620 |
|
|
{ |
621 |
|
|
FEM_TETRA* tet2=(*(exterieur.begin())); |
622 |
|
|
supprimer_liste(exterieur,tet2); |
623 |
|
|
ajouter_liste(know,tet2); |
624 |
|
|
for (int nd=0;nd<4;nd++) |
625 |
|
|
{ |
626 |
|
|
FEM_NOEUD* noeud=tet2->get_fem_noeud(nd); |
627 |
|
|
int nbtetra=noeud->get_lien_tetra()->get_nb(); |
628 |
|
|
for (int i=0;i<nbtetra;i++) |
629 |
|
|
{ |
630 |
|
|
FEM_TETRA* tet3=noeud->get_lien_tetra()->get(i); |
631 |
|
|
if (tet2==tet3) continue; |
632 |
|
|
LISTE_FM::iterator it2=find(far.begin(),far.end(),tet3); |
633 |
|
|
if (it2!=far.end()) |
634 |
|
|
{ |
635 |
|
|
supprimer_liste(far,tet3); |
636 |
|
|
ajouter_liste(exterieur,tet3); |
637 |
|
|
tet3->change_solution(1e300); |
638 |
|
|
} |
639 |
|
|
} |
640 |
|
|
} |
641 |
|
|
} |
642 |
|
|
LISTE_FM_TRI::iterator itfin=trialtri.end(); |
643 |
|
|
itfin--; |
644 |
|
|
longref=(*itfin).first; |
645 |
|
|
} |
646 |
|
|
} |
647 |
|
|
while (fin==0); |
648 |
|
|
LISTE_FEM_NOEUD::iterator itnoeud; |
649 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
650 |
|
|
noeud->change_numero(0); |
651 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
652 |
|
|
{ |
653 |
|
|
if (tet->get_solution()>1e200) continue; |
654 |
|
|
tet->get_fem_noeud(0)->change_numero(1); |
655 |
|
|
tet->get_fem_noeud(1)->change_numero(1); |
656 |
|
|
tet->get_fem_noeud(2)->change_numero(1); |
657 |
|
|
tet->get_fem_noeud(3)->change_numero(1); |
658 |
|
|
} |
659 |
|
|
int i=0; |
660 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
661 |
|
|
{ |
662 |
|
|
if (noeud->get_numero()==1) sol->ecrire(i,numsol,noeud->get_solution()); else sol->ecrire(i,numsol,1e300); |
663 |
|
|
++i; |
664 |
|
|
} |
665 |
|
|
} |
666 |
francois |
259 |
void TOIBREP::exporter_IBrep(string chemin,FEM_SOLUTION* solution,MG_GROUPE_TOPOLOGIQUE* mggt) |
667 |
|
|
{ |
668 |
|
|
TPL_MAP_ENTITE<MG_VOLUME*> lst; |
669 |
|
|
if (mggt==NULL) |
670 |
|
|
{ |
671 |
|
|
int nbvol=geo->get_nb_mg_volume(); |
672 |
|
|
for (int i=0;i<nbvol;i++) |
673 |
|
|
lst.ajouter(geo->get_mg_volume(i)); |
674 |
|
|
} |
675 |
|
|
else |
676 |
|
|
{ |
677 |
|
|
int nbmggt=mggt->get_nb(); |
678 |
|
|
for (int i=0;i<nbmggt;i++) |
679 |
|
|
if (mggt->get(i)->get_dimension()==3) |
680 |
|
|
lst.ajouter((MG_VOLUME*)mggt->get(i)); |
681 |
|
|
} |
682 |
|
|
IBrep brep(100); |
683 |
|
|
int nbvolexp=lst.get_nb(); |
684 |
|
|
for (int i=0;i<nbvolexp;i++) |
685 |
|
|
{ |
686 |
|
|
MG_VOLUME* vol=lst.get(i); |
687 |
|
|
int nbcoq=vol->get_nb_mg_coquille(); |
688 |
|
|
IVolumeN ivoltmp(vol->get_id()); |
689 |
|
|
IVolume* ivol=brep.AddVolume(ivoltmp); |
690 |
|
|
for (int j=0;j<nbcoq;j++) |
691 |
|
|
{ |
692 |
|
|
MG_COQUILLE* coq=vol->get_mg_coquille(j); |
693 |
|
|
int nbface=coq->get_nb_mg_coface(); |
694 |
|
|
IShell ishell(nbface); |
695 |
|
|
for (int k=0;k<nbface;k++) |
696 |
|
|
{ |
697 |
|
|
MG_COFACE* coface=coq->get_mg_coface(k); |
698 |
|
|
ishell[k]=coface->get_id(); |
699 |
|
|
MG_FACE* face=coface->get_face(); |
700 |
|
|
int sens=coface->get_orientation(); |
701 |
|
|
ICoFaceN icoface(coface->get_id(),face->get_id(),sens); |
702 |
|
|
brep.AddCoFace(icoface); |
703 |
|
|
IFace* iface=brep.GetFace(face->get_id()); |
704 |
|
|
if (iface==NULL) |
705 |
|
|
{ |
706 |
|
|
IFaceN ifacenew(face->get_id()); |
707 |
|
|
iface=brep.AddFace(ifacenew); |
708 |
|
|
int nbbou=face->get_nb_mg_boucle(); |
709 |
|
|
for (int l=0;l<nbbou;l++) |
710 |
|
|
{ |
711 |
|
|
MG_BOUCLE* bou=face->get_mg_boucle(l); |
712 |
|
|
int nbare=bou->get_nb_mg_coarete(); |
713 |
|
|
ILoop iloop(nbare); |
714 |
|
|
for (int m=0;m<nbare;m++) |
715 |
|
|
{ |
716 |
|
|
MG_COARETE* coare=bou->get_mg_coarete(m); |
717 |
|
|
iloop[m]=coare->get_id(); |
718 |
|
|
MG_ARETE* are=coare->get_arete(); |
719 |
|
|
int sens=coare->get_orientation(); |
720 |
|
|
ICoEdgeN icoedge(coare->get_id(),are->get_id(),sens,face->get_id()); |
721 |
|
|
brep.AddCoEdge(icoedge); |
722 |
|
|
IEdge* iedge=brep.GetEdge(are->get_id()); |
723 |
|
|
IVertex *ivertex1,*ivertex2; |
724 |
|
|
ICoVertex *icover1,*icover2; |
725 |
|
|
if (iedge==NULL) |
726 |
|
|
{ |
727 |
|
|
MG_COSOMMET* cover1=are->get_cosommet1(); |
728 |
|
|
MG_COSOMMET* cover2=are->get_cosommet2(); |
729 |
|
|
MG_SOMMET* ver1=cover1->get_sommet(); |
730 |
|
|
MG_SOMMET* ver2=cover2->get_sommet(); |
731 |
|
|
ICoVertexN icovertmp1(cover1->get_id(),are->get_id(),ver1->get_id(),cover1->get_t()); |
732 |
|
|
ICoVertexN icovertmp2(cover2->get_id(),are->get_id(),ver2->get_id(),cover2->get_t()); |
733 |
|
|
icover1=brep.AddCoVertex(icovertmp1); |
734 |
|
|
icover2=brep.AddCoVertex(icovertmp2); |
735 |
|
|
IEdgeN iedgetmp(are->get_id(),cover1->get_id(),cover2->get_id()); |
736 |
|
|
ivertex1=brep.GetVertex(ver1->get_id()); |
737 |
|
|
ivertex2=brep.GetVertex(ver2->get_id()); |
738 |
|
|
if (ivertex1==NULL) |
739 |
|
|
{ |
740 |
|
|
MG_POINT* pt=ver1->get_point(); |
741 |
|
|
double xyz[3]; |
742 |
|
|
pt->evaluer(xyz); |
743 |
|
|
IVertexN ivertex(ver1->get_id(),xyz); |
744 |
|
|
ivertex1=brep.AddVertex(ivertex); |
745 |
|
|
} |
746 |
|
|
if (ivertex2==NULL) |
747 |
|
|
{ |
748 |
|
|
MG_POINT* pt=ver2->get_point(); |
749 |
|
|
double xyz[3]; |
750 |
|
|
pt->evaluer(xyz); |
751 |
|
|
IVertexN ivertex(ver2->get_id(),xyz); |
752 |
|
|
ivertex2=brep.AddVertex(ivertex); |
753 |
|
|
} |
754 |
|
|
ivertex1->AddCoVertex(cover1->get_id()); |
755 |
|
|
ivertex2->AddCoVertex(cover2->get_id()); |
756 |
|
|
iedge=brep.AddEdge(iedgetmp); |
757 |
|
|
} |
758 |
|
|
iedge->AddCoEdge(coare->get_id(),brep); |
759 |
|
|
if (sens==1) |
760 |
|
|
{ |
761 |
|
|
icover1=brep.GetCoVertex(iedge->FromCoVertex()); |
762 |
|
|
ivertex1=brep.GetVertex(icover1->Vertex()); |
763 |
|
|
ivertex1->AddFace(face->get_id()); |
764 |
|
|
} |
765 |
|
|
else |
766 |
|
|
{ |
767 |
|
|
icover2=brep.GetCoVertex(iedge->ToCoVertex()); |
768 |
|
|
ivertex2=brep.GetVertex(icover2->Vertex()); |
769 |
|
|
ivertex2->AddFace(face->get_id()); |
770 |
|
|
} |
771 |
|
|
} |
772 |
|
|
iface->AddLoop(iloop); |
773 |
|
|
} |
774 |
|
|
} |
775 |
|
|
iface->AddCoFace(coface->get_id()); |
776 |
|
|
} |
777 |
|
|
ivol->AddShell(ishell); |
778 |
|
|
} |
779 |
|
|
} |
780 |
|
|
int nbsol=solution->get_nb_champ(); |
781 |
francois |
262 |
unsigned long *correspondface=new unsigned long[nbsol]; |
782 |
|
|
for (int i=0;i<nbsol;i++) |
783 |
|
|
{ |
784 |
|
|
std::string nom=solution->get_legende(i); |
785 |
|
|
char nom2[2]; |
786 |
|
|
unsigned long id; |
787 |
|
|
sscanf(nom.c_str(),"%s %lu",&nom2,&id); |
788 |
|
|
correspondface[i]=id; |
789 |
|
|
} |
790 |
francois |
259 |
LISTE_FEM_NOEUD::iterator itnoeud; |
791 |
|
|
int i=0; |
792 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
793 |
|
|
{ |
794 |
|
|
int nbsolnoeud=0; |
795 |
|
|
for (int j=0;j<nbsol;j++) |
796 |
|
|
{ |
797 |
|
|
if (solution->lire(i,j)<1e200) nbsolnoeud++; |
798 |
|
|
} |
799 |
|
|
double *xyz=noeud->get_coord(); |
800 |
|
|
INodeN inoeudtmp(noeud->get_id(),xyz[0],xyz[1],xyz[2],nbsolnoeud); |
801 |
|
|
INode* inoeud=brep.AddNode(inoeudtmp); |
802 |
|
|
int num=0; |
803 |
|
|
for (int j=0;j<nbsol;j++) |
804 |
|
|
{ |
805 |
|
|
if (solution->lire(i,j)<1e200) |
806 |
|
|
{ |
807 |
francois |
262 |
inoeud->Fields()[num]=correspondface[j]; |
808 |
francois |
259 |
inoeud->Values()[num]=solution->lire(i,j); |
809 |
|
|
num++; |
810 |
|
|
} |
811 |
|
|
} |
812 |
|
|
i++; |
813 |
|
|
} |
814 |
francois |
262 |
delete [] correspondface; |
815 |
francois |
259 |
LISTE_FEM_TETRA::iterator ittet; |
816 |
|
|
int num=0; |
817 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
818 |
|
|
{ |
819 |
|
|
IElementN xfemele(IElement::TETRAHEDRON); |
820 |
|
|
num++; |
821 |
|
|
xfemele.num=num; |
822 |
|
|
xfemele.GetNode(0)=tet->get_fem_noeud(0)->get_id(); |
823 |
|
|
xfemele.GetNode(1)=tet->get_fem_noeud(1)->get_id(); |
824 |
|
|
xfemele.GetNode(2)=tet->get_fem_noeud(2)->get_id(); |
825 |
|
|
xfemele.GetNode(3)=tet->get_fem_noeud(3)->get_id(); |
826 |
|
|
brep.AddElement(xfemele); |
827 |
|
|
} |
828 |
francois |
222 |
|
829 |
francois |
259 |
|
830 |
|
|
|
831 |
|
|
|
832 |
|
|
std::ofstream output(chemin.c_str()); |
833 |
|
|
output << brep << std::endl; |
834 |
|
|
output.close(); |
835 |
|
|
|
836 |
francois |
262 |
|
837 |
|
|
|
838 |
|
|
int nlong=chemin.size(); |
839 |
|
|
for (int i=0;i<nlong;i++) |
840 |
|
|
if (chemin[i]=='.') chemin[i]='_'; |
841 |
|
|
chemin=chemin+".pos"; |
842 |
|
|
std::ofstream output2(chemin.c_str()); |
843 |
|
|
brep.togmshpos(output2); |
844 |
|
|
output2.close(); |
845 |
|
|
|
846 |
francois |
259 |
} |
847 |
|
|
|
848 |
|
|
|
849 |
|
|
|
850 |
|
|
void TOIBREP::ajouter_liste(LISTE_FM_TRI &lst,LISTE_FM_TRI_ID &lstid,FEM_TETRA* tet,double val) |
851 |
francois |
222 |
{ |
852 |
|
|
pair<double,FEM_TETRA*> p(val,tet); |
853 |
|
|
LISTE_FM_TRI::iterator it=lst.insert(p); |
854 |
|
|
lstid[tet->get_id()]=it; |
855 |
|
|
} |
856 |
|
|
|
857 |
francois |
259 |
void TOIBREP::supprimer_liste(LISTE_FM_TRI &lst,LISTE_FM_TRI_ID &lstid,FEM_TETRA* tet) |
858 |
francois |
222 |
{ |
859 |
|
|
LISTE_FM_TRI::iterator it2=lstid[tet->get_id()]; |
860 |
|
|
LISTE_FM_TRI_ID::iterator it3=lstid.find(tet->get_id()); |
861 |
|
|
lstid.erase(it3); |
862 |
|
|
lst.erase(it2); |
863 |
|
|
} |
864 |
|
|
|
865 |
francois |
259 |
void TOIBREP::ajouter_liste(LISTE_FM& lst,FEM_TETRA* tet) |
866 |
francois |
222 |
{ |
867 |
|
|
lst.push_back(tet); |
868 |
|
|
} |
869 |
|
|
|
870 |
francois |
259 |
void TOIBREP::supprimer_liste(LISTE_FM& lst,FEM_TETRA* tet) |
871 |
francois |
222 |
{ |
872 |
|
|
LISTE_FM::iterator it=find(lst.begin(),lst.end(),tet); |
873 |
|
|
if (it!=lst.end()) lst.erase(it); |
874 |
|
|
} |
875 |
|
|
|
876 |
|
|
|
877 |
|
|
|
878 |
francois |
259 |
double TOIBREP::resoudgradT(FEM_TETRA* tet,int *signe) |
879 |
francois |
222 |
{ |
880 |
|
|
double j[9]; |
881 |
|
|
double N[12]; |
882 |
|
|
double jN[12]={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}; |
883 |
|
|
double T[4]; |
884 |
|
|
double uv[2]={0.25,0.25}; |
885 |
|
|
|
886 |
|
|
|
887 |
|
|
tet->get_inverse_jacob(j,uv); |
888 |
|
|
for (int i=0;i<3;i++) |
889 |
|
|
for (int k=0;k<4;k++) |
890 |
|
|
N[i*4+k]=tet->get_fonction_derive_interpolation(k+1,i+1,uv); |
891 |
|
|
int premier=0; |
892 |
|
|
double tmin=1e300; |
893 |
|
|
double tmax=-1e300; |
894 |
|
|
for (int i=0;i<4;i++) |
895 |
|
|
{ |
896 |
|
|
if (i==tet->get_numero()) continue; |
897 |
|
|
T[i]=tet->get_fem_noeud(i)->get_solution(); |
898 |
|
|
if (fabs(T[i])>0.000001) |
899 |
|
|
{ |
900 |
|
|
if (premier==0) |
901 |
|
|
if (T[i]>0) (*signe)=1; else (*signe)=-1; |
902 |
|
|
else if (T[i]*(*signe)<0) (*signe)=0; |
903 |
|
|
} |
904 |
|
|
T[i]=fabs(T[i]); |
905 |
|
|
if (tet->get_numero()!=i) |
906 |
|
|
{ |
907 |
|
|
if (T[i]<tmin) tmin=T[i]; |
908 |
|
|
if (T[i]>tmax) tmax=T[i]; |
909 |
|
|
} |
910 |
|
|
premier=1; |
911 |
|
|
} |
912 |
|
|
for (int i=0;i<3;i++) |
913 |
|
|
for (int k=0;k<4;k++) |
914 |
|
|
for (int l=0;l<3;l++) |
915 |
|
|
jN[i*4+k]=jN[i*4+k]+j[i*3+l]*N[l*4+k]; |
916 |
|
|
double a=0.,b=0.,c=-1.; |
917 |
|
|
for (int i=0;i<3;i++) |
918 |
|
|
{ |
919 |
|
|
double coef=0.; |
920 |
|
|
double coefinc=0.; |
921 |
|
|
for (int l=0;l<4;l++) |
922 |
|
|
{ |
923 |
|
|
if (tet->get_numero()!=l) coef=coef+jN[i*4+l]*T[l]; |
924 |
|
|
else coefinc=coefinc+jN[i*4+l]; |
925 |
|
|
} |
926 |
|
|
c=c+coef*coef; |
927 |
|
|
a=a+coefinc*coefinc; |
928 |
|
|
b=b+2*coef*coefinc; |
929 |
|
|
} |
930 |
|
|
/*if (*signe==0) |
931 |
|
|
cout << "attention " <<endl;*/ |
932 |
|
|
double det=b*b-4.*a*c; |
933 |
|
|
if (det<0.) det=0.; else det=sqrt(det); |
934 |
|
|
double sol1=(-b-det)/2./a; |
935 |
|
|
double sol2=(-b+det)/2./a; |
936 |
|
|
double sol=sol1; |
937 |
|
|
if (sol2>sol1) sol=sol2; |
938 |
|
|
if (sol<tmin*0.99) |
939 |
|
|
sol=0.; |
940 |
|
|
sol=sol*(*signe); |
941 |
|
|
return sol; |
942 |
|
|
} |