1 |
bechet |
105 |
#include "gestionversion.h" |
2 |
francois |
104 |
#include "toxfem.h" |
3 |
|
|
#include "MagXchange.h" |
4 |
|
|
#include "mg_file.h" |
5 |
|
|
#include "ot_mathematique.h" |
6 |
|
|
#include "tpl_map_entite.h" |
7 |
francois |
222 |
#include "tpl_relation_entite.h" |
8 |
francois |
104 |
#include "tpl_octree.h" |
9 |
francois |
106 |
#include "toxfem_point.h" |
10 |
|
|
#include "vct.h" |
11 |
francois |
104 |
#include <math.h> |
12 |
|
|
|
13 |
|
|
|
14 |
francois |
222 |
|
15 |
|
|
TOXFEM::TOXFEM(class MG_GESTIONNAIRE *g,class MG_GEOMETRIE *ge,class FEM_MAILLAGE* femm,int nbpas):geo(ge),gest(g),mai(femm),NPAS(nbpas) |
16 |
francois |
104 |
{ |
17 |
|
|
} |
18 |
|
|
|
19 |
|
|
|
20 |
francois |
106 |
TOXFEM::~TOXFEM() |
21 |
francois |
104 |
{ |
22 |
|
|
} |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
26 |
francois |
222 |
int TOXFEM::estdansletetra(FEM_TETRA *tet,double x,double y, double z) |
27 |
francois |
104 |
{ |
28 |
francois |
222 |
double *xyz1,*xyz2,*xyz3,*xyz4; |
29 |
|
|
if (tet->get_nb_fem_noeud()==4) |
30 |
|
|
{ |
31 |
|
|
xyz1=tet->get_fem_noeud(0)->get_coord(); |
32 |
|
|
xyz2=tet->get_fem_noeud(1)->get_coord(); |
33 |
|
|
xyz3=tet->get_fem_noeud(2)->get_coord(); |
34 |
|
|
xyz4=tet->get_fem_noeud(3)->get_coord(); |
35 |
|
|
} |
36 |
|
|
if (tet->get_nb_fem_noeud()==10) |
37 |
|
|
{ |
38 |
|
|
xyz1=tet->get_fem_noeud(0)->get_coord(); |
39 |
|
|
xyz2=tet->get_fem_noeud(2)->get_coord(); |
40 |
|
|
xyz3=tet->get_fem_noeud(4)->get_coord(); |
41 |
|
|
xyz4=tet->get_fem_noeud(9)->get_coord(); |
42 |
|
|
} |
43 |
francois |
104 |
OT_VECTEUR_3D v1(xyz2[0]-xyz1[0],xyz2[1]-xyz1[1],xyz2[2]-xyz1[2]); |
44 |
|
|
OT_VECTEUR_3D v2(xyz3[0]-xyz1[0],xyz3[1]-xyz1[1],xyz3[2]-xyz1[2]); |
45 |
|
|
OT_VECTEUR_3D v3(xyz4[0]-xyz1[0],xyz4[1]-xyz1[1],xyz4[2]-xyz1[2]); |
46 |
|
|
OT_VECTEUR_3D v4(x-xyz1[0],y-xyz1[1],z-xyz1[2]); |
47 |
|
|
OT_MATRICE_3D mat(v1,v2,v3); |
48 |
|
|
OT_MATRICE_3D mat1(v4,v2,v3); |
49 |
|
|
OT_MATRICE_3D mat2(v1,v4,v3); |
50 |
|
|
OT_MATRICE_3D mat3(v1,v2,v4); |
51 |
|
|
double det=mat.get_determinant(); |
52 |
|
|
double xsi=mat1.get_determinant()/det; |
53 |
|
|
double eta=mat2.get_determinant()/det; |
54 |
|
|
double dseta=mat3.get_determinant()/det; |
55 |
|
|
int reponse=1; |
56 |
|
|
if (xsi<-0.000001) reponse=0; |
57 |
|
|
if (eta<-0.000001) reponse=0; |
58 |
|
|
if (dseta<-0.000001) reponse=0; |
59 |
|
|
if (xsi+eta+dseta>1.000001) reponse=0; |
60 |
|
|
return reponse; |
61 |
|
|
|
62 |
|
|
} |
63 |
|
|
|
64 |
francois |
222 |
double TOXFEM::calculdist(double *n,double x,double y,double z,FEM_NOEUD* noeud) |
65 |
francois |
104 |
{ |
66 |
|
|
double* xyz=noeud->get_coord(); |
67 |
|
|
double dist=sqrt((xyz[0]-x)*(xyz[0]-x)+(xyz[1]-y)*(xyz[1]-y)+(xyz[2]-z)*(xyz[2]-z)); |
68 |
|
|
OT_VECTEUR_3D vec1(n[0],n[1],n[2]); |
69 |
|
|
OT_VECTEUR_3D vec2(xyz[0]-x,xyz[1]-y,xyz[2]-z); |
70 |
|
|
double ps=vec1*vec2; |
71 |
|
|
if (ps<0.) dist=-dist; |
72 |
|
|
return dist; |
73 |
|
|
} |
74 |
|
|
|
75 |
francois |
222 |
//void TOXFEM::importer(std::string nomfichier,class MagXchange* data,std::string nomfichierout) |
76 |
|
|
void TOXFEM::importer(std::string nomfichier,MG_GROUPE_TOPOLOGIQUE* mggt,MagXchange* data) |
77 |
francois |
104 |
{ |
78 |
francois |
222 |
TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*> lst; |
79 |
francois |
106 |
int nbface=geo->get_nb_mg_face(); |
80 |
francois |
222 |
if (mggt!=NULL) |
81 |
|
|
{ |
82 |
|
|
int nb=mggt->get_nb(); |
83 |
|
|
for (int i=0;i<nb;i++) |
84 |
|
|
{ |
85 |
|
|
lst.ajouter(mggt->get(i)); |
86 |
|
|
mggt->get(i)->get_topologie_sousjacente(&lst); |
87 |
|
|
} |
88 |
|
|
} |
89 |
|
|
else |
90 |
|
|
{ |
91 |
|
|
int nbvol=geo->get_nb_mg_volume(); |
92 |
|
|
for (int i=0;i<nbvol;i++) |
93 |
|
|
{ |
94 |
|
|
lst.ajouter(geo->get_mg_volume(i)); |
95 |
|
|
geo->get_mg_volume(i)->get_topologie_sousjacente(&lst); |
96 |
|
|
} |
97 |
|
|
} |
98 |
|
|
int nbvraiface=0; |
99 |
|
|
TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*>::ITERATEUR it; |
100 |
|
|
for (MG_ELEMENT_TOPOLOGIQUE* ele=lst.get_premier(it);ele!=NULL;ele=lst.get_suivant(it)) |
101 |
|
|
if (ele->get_dimension()==2) nbvraiface++; |
102 |
|
|
int nb_noeud=mai->get_nb_fem_noeud(); |
103 |
francois |
104 |
std::string nomfichier2=nomfichier+".sol"; |
104 |
francois |
222 |
FEM_SOLUTION* solution=new FEM_SOLUTION(mai,nbvraiface+1,(char*)nomfichier2.c_str(),nb_noeud,"LS_",ENTITE_NOEUD); |
105 |
francois |
106 |
solution->change_legende(0,"Peau"); |
106 |
francois |
222 |
int i=0; |
107 |
|
|
for (MG_ELEMENT_TOPOLOGIQUE* ele=lst.get_premier(it);ele!=NULL;ele=lst.get_suivant(it)) |
108 |
francois |
106 |
{ |
109 |
francois |
222 |
if (ele->get_dimension()!=2) continue; |
110 |
|
|
if (mggt!=NULL) |
111 |
|
|
if (lst.existe(ele)==0) continue; |
112 |
francois |
106 |
char mess[255]; |
113 |
francois |
222 |
sprintf(mess,"Face %lu",ele->get_id()); |
114 |
|
|
++i; |
115 |
|
|
solution->change_legende(i,mess); |
116 |
francois |
106 |
} |
117 |
francois |
222 |
gest->ajouter_fem_solution(solution); |
118 |
francois |
104 |
double xmin=1e300,ymin=1e300,zmin=1e308; |
119 |
|
|
double xmax=-1e300,ymax=-1e300,zmax=-1e308; |
120 |
francois |
222 |
TPL_MAP_ENTITE<FEM_NOEUD*> lst_noeud; |
121 |
|
|
LISTE_FEM_NOEUD::iterator it2; |
122 |
|
|
i=0; |
123 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(it2);noeud!=NULL;noeud=mai->get_suivant_noeud(it2)) |
124 |
francois |
104 |
{ |
125 |
|
|
double* xyz=noeud->get_coord(); |
126 |
|
|
if (xyz[0]<xmin) xmin=xyz[0]; |
127 |
|
|
if (xyz[1]<ymin) ymin=xyz[1]; |
128 |
|
|
if (xyz[2]<zmin) zmin=xyz[2]; |
129 |
|
|
if (xyz[0]>xmax) xmax=xyz[0]; |
130 |
|
|
if (xyz[1]>ymax) ymax=xyz[1]; |
131 |
|
|
if (xyz[2]>zmax) zmax=xyz[2]; |
132 |
francois |
222 |
for (int j=0;j<nbvraiface+1;j++) |
133 |
francois |
106 |
solution->ecrire(i,j,1e300); |
134 |
francois |
104 |
lst_noeud.ajouter(noeud); |
135 |
francois |
222 |
i++; |
136 |
francois |
104 |
} |
137 |
|
|
octree.initialiser(&lst_noeud,1,xmin,ymin,zmin,xmax,ymax,zmax); |
138 |
francois |
222 |
LISTE_FEM_TETRA::iterator it3; |
139 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(it3);tet!=NULL;tet=mai->get_suivant_tetra(it3)) |
140 |
francois |
104 |
octree.inserer(tet); |
141 |
francois |
222 |
//levelset0(solution,0); |
142 |
francois |
106 |
for (int i=0;i<nbface;i++) |
143 |
|
|
{ |
144 |
francois |
222 |
MG_FACE* face=geo->get_mg_face(i); |
145 |
|
|
if (!lst.existe(face)) continue; |
146 |
francois |
106 |
vector<MG_FACE*> lstface; |
147 |
francois |
222 |
lstface.push_back(face); |
148 |
|
|
/*TPL_LISTE_ENTITE<double> lst; |
149 |
francois |
106 |
int type=face->get_surface()->get_type_geometrique(lst); |
150 |
|
|
int idem=0; |
151 |
|
|
for (int j=0;j<i;j++) |
152 |
|
|
{ |
153 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
154 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
155 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
156 |
|
|
if (type==type2) |
157 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
158 |
|
|
{ |
159 |
|
|
int diff=0; |
160 |
|
|
for (int i=0;i<lst.get_nb();i++) |
161 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
162 |
|
|
if (diff==0) idem=1; |
163 |
|
|
} |
164 |
|
|
} |
165 |
|
|
if (!idem) lstface.push_back(geo->get_mg_face(i)); |
166 |
|
|
for (int j=i+1;j<nbface;j++) |
167 |
|
|
{ |
168 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
169 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
170 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
171 |
|
|
if (type==type2) |
172 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
173 |
|
|
{ |
174 |
|
|
int diff=0; |
175 |
|
|
for (int i=0;i<lst.get_nb();i++) |
176 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
177 |
|
|
if (diff==0) lstface.push_back(face2); |
178 |
|
|
} |
179 |
francois |
222 |
}*/ |
180 |
|
|
levelsetn(&lst,&lstface,solution,i+1); |
181 |
francois |
106 |
} |
182 |
francois |
222 |
/*if (nomfichierout!="") gest.enregistrer((char*)nomfichierout.c_str()); |
183 |
francois |
106 |
if (data==NULL) return; |
184 |
|
|
for (int i=0;i<nb_noeud;i++) |
185 |
|
|
{ |
186 |
|
|
MG_NOEUD* noeud=mai->get_mg_noeud(i); |
187 |
|
|
MagNode *xfemnode; |
188 |
|
|
int nbsol=0; |
189 |
|
|
for (int j=0;j<nbface+1;j++) |
190 |
|
|
if (solution->lire(i,j)<1e200) nbsol++; |
191 |
|
|
if (nbsol>0) |
192 |
|
|
{ |
193 |
|
|
xfemnode=new MagNode(nbsol); |
194 |
|
|
int isol=0; |
195 |
|
|
for (int j=0;j<nbface+1;j++) |
196 |
|
|
if (solution->lire(i,j)<1e200) |
197 |
|
|
{ |
198 |
|
|
xfemnode->values()[isol]=solution->lire(i,j); |
199 |
|
|
xfemnode->idvalues()[isol]=j; |
200 |
|
|
isol++; |
201 |
|
|
} |
202 |
|
|
} // 1 valeur de levelset |
203 |
|
|
else |
204 |
|
|
xfemnode=new MagNode(0); // 0 valeur de levelset |
205 |
|
|
double * posxfem=xfemnode->position(); |
206 |
|
|
for (int i=0;i<3;++i) posxfem[i]=noeud->get_coord()[i]; |
207 |
|
|
xfemnode->id(noeud->get_id()); |
208 |
|
|
data->addnode(*xfemnode,true); |
209 |
|
|
delete xfemnode; |
210 |
|
|
} |
211 |
|
|
int nbtetra=mai->get_nb_mg_tetra(); |
212 |
|
|
for (int i=0;i<nbtetra;i++) |
213 |
|
|
{ |
214 |
|
|
MG_TETRA* tet=mai->get_mg_tetra(i); |
215 |
|
|
MagElement xfemele(MagElement::TETRAHEDRON); |
216 |
|
|
xfemele.nodes()[0]=tet->get_noeud1()->get_id(); |
217 |
|
|
xfemele.nodes()[1]=tet->get_noeud2()->get_id(); |
218 |
|
|
xfemele.nodes()[2]=tet->get_noeud3()->get_id(); |
219 |
|
|
xfemele.nodes()[3]=tet->get_noeud4()->get_id(); |
220 |
|
|
data->addelement(xfemele); |
221 |
francois |
222 |
}*/ |
222 |
francois |
106 |
} |
223 |
|
|
|
224 |
francois |
222 |
void TOXFEM::levelset0(FEM_SOLUTION *solution,int numsol) |
225 |
francois |
106 |
{ |
226 |
|
|
solution->active_solution(numsol); |
227 |
francois |
104 |
int nbface=geo->get_nb_mg_face(); |
228 |
francois |
106 |
vector<TOXFEM_POINT*> lst; |
229 |
francois |
104 |
for (int iface=0;iface<nbface;iface++) |
230 |
|
|
{ |
231 |
francois |
106 |
MG_FACE* face=geo->get_mg_face(iface); |
232 |
|
|
int nbpoint=lst.size(); |
233 |
francois |
104 |
TPL_SET<MG_ELEMENT_MAILLAGE*>::ITERATEUR it; |
234 |
|
|
for (MG_ELEMENT_MAILLAGE* ele=face->get_lien_maillage()->get_premier(it);ele!=NULL;ele=face->get_lien_maillage()->get_suivant(it)) |
235 |
|
|
{ |
236 |
|
|
MG_TRIANGLE *tri=(MG_TRIANGLE*)ele; |
237 |
francois |
106 |
TOXFEM_POINT *pt1=new TOXFEM_POINT(tri->get_noeud1()->get_x(),tri->get_noeud1()->get_y(),tri->get_noeud1()->get_z(),tri->get_noeud1()->get_lien_topologie()); |
238 |
|
|
TOXFEM_POINT *pt2=new TOXFEM_POINT(tri->get_noeud2()->get_x(),tri->get_noeud2()->get_y(),tri->get_noeud2()->get_z(),tri->get_noeud2()->get_lien_topologie()); |
239 |
|
|
TOXFEM_POINT *pt3=new TOXFEM_POINT(tri->get_noeud3()->get_x(),tri->get_noeud3()->get_y(),tri->get_noeud3()->get_z(),tri->get_noeud3()->get_lien_topologie()); |
240 |
|
|
lst.push_back(pt1); |
241 |
|
|
lst.push_back(pt2); |
242 |
|
|
lst.push_back(pt3); |
243 |
francois |
104 |
} |
244 |
francois |
222 |
calcullevelsetpremierepasse(solution,numsol,face,8,&lst,nbpoint,lst.size()); |
245 |
francois |
106 |
} |
246 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
247 |
|
|
} |
248 |
francois |
222 |
void TOXFEM::calcullevelsetpremierepasse(FEM_SOLUTION *solution,int numsol,MG_FACE* face,int sens,vector<TOXFEM_POINT*> *lst,int n1,int n2) |
249 |
francois |
106 |
{ |
250 |
|
|
for (int i=n1;i<n2;i++) |
251 |
francois |
104 |
{ |
252 |
francois |
106 |
TOXFEM_POINT* pt=(*lst)[i]; |
253 |
francois |
104 |
double uv[2]; |
254 |
francois |
106 |
double xyz[3]; |
255 |
|
|
pt->get_coord3(xyz); |
256 |
francois |
222 |
double normal[3]; |
257 |
francois |
104 |
face->inverser(uv,xyz); |
258 |
|
|
face->calcul_normale_unitaire(uv,normal); |
259 |
francois |
222 |
normal[0]=normal[0]*sens*(-1.); |
260 |
|
|
normal[1]=normal[1]*sens*(-1.); |
261 |
|
|
normal[2]=normal[2]*sens*(-1.); |
262 |
|
|
TPL_MAP_ENTITE<FEM_TETRA*> liste; |
263 |
francois |
104 |
octree.rechercher(xyz[0],xyz[1],xyz[2],0.,liste); |
264 |
francois |
222 |
TPL_MAP_ENTITE<FEM_TETRA*>::ITERATEUR it; |
265 |
|
|
for (FEM_TETRA* tet=liste.get_premier(it);tet!=NULL;tet=liste.get_suivant(it)) |
266 |
francois |
104 |
{ |
267 |
francois |
222 |
if (estdansletetra(tet,xyz[0],xyz[1],xyz[2])) |
268 |
francois |
104 |
{ |
269 |
francois |
222 |
for (int k=0;k<tet->get_nb_fem_noeud();k++) |
270 |
francois |
106 |
{ |
271 |
francois |
222 |
double dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_fem_noeud(k)); |
272 |
|
|
if (fabs(dist)<fabs(tet->get_fem_noeud(k)->get_solution())) |
273 |
|
|
{ |
274 |
|
|
tet->get_fem_noeud(k)->change_solution(dist); |
275 |
|
|
tet->get_fem_noeud(k)->change_numero(pt->get_id()); |
276 |
|
|
pt->change_coord2(uv); |
277 |
|
|
} |
278 |
francois |
106 |
} |
279 |
francois |
104 |
} |
280 |
|
|
} |
281 |
|
|
} |
282 |
francois |
106 |
} |
283 |
|
|
|
284 |
francois |
222 |
void TOXFEM::calcullevelsetdeuxiemepasse(FEM_SOLUTION *solution,int numsol,vector<TOXFEM_POINT*> *lst) |
285 |
francois |
106 |
{ |
286 |
francois |
222 |
LISTE_FEM_TETRA::iterator ittet; |
287 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
288 |
francois |
106 |
{ |
289 |
francois |
222 |
for (int i=0;i<tet->get_nb_fem_noeud();i++) |
290 |
|
|
if (tet->get_fem_noeud(i)->get_solution()<1e250) |
291 |
francois |
106 |
{ |
292 |
francois |
222 |
TOXFEM_POINT* pt=(*lst)[tet->get_fem_noeud(i)->get_numero()]; |
293 |
francois |
106 |
int dim=pt->get_mg_element_topologique()->get_dimension(); |
294 |
|
|
if (dim==2) |
295 |
|
|
{ |
296 |
|
|
MG_FACE* face=(MG_FACE*)pt->get_mg_element_topologique(); |
297 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),face,pt); |
298 |
francois |
106 |
int signe=1; |
299 |
francois |
222 |
if (tet->get_fem_noeud(i)->get_solution()<0) signe=-1; |
300 |
|
|
tet->get_fem_noeud(i)->change_solution(signe*dist); |
301 |
francois |
106 |
} |
302 |
|
|
if (dim==1) |
303 |
|
|
{ |
304 |
|
|
MG_ARETE* arete=(MG_ARETE*)pt->get_mg_element_topologique(); |
305 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),arete,pt); |
306 |
|
|
tet->get_fem_noeud(i)->change_solution(dist); |
307 |
francois |
106 |
} |
308 |
|
|
if (dim==0) |
309 |
|
|
{ |
310 |
|
|
MG_SOMMET* sommet=(MG_SOMMET*)pt->get_mg_element_topologique(); |
311 |
|
|
MG_ARETE* arete=sommet->get_mg_cosommet(0)->get_arete(); |
312 |
francois |
222 |
double dist=calcul_distance(tet->get_fem_noeud(i),arete,pt); |
313 |
|
|
tet->get_fem_noeud(i)->change_solution(dist); |
314 |
francois |
106 |
} |
315 |
|
|
|
316 |
|
|
} |
317 |
francois |
104 |
} |
318 |
francois |
222 |
int i=0; |
319 |
|
|
LISTE_FEM_NOEUD::iterator itnoeud; |
320 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
321 |
francois |
104 |
{ |
322 |
francois |
106 |
solution->ecrire(i,numsol,noeud->get_solution()); |
323 |
francois |
222 |
++i; |
324 |
francois |
104 |
} |
325 |
francois |
106 |
int nbpt=(*lst).size(); |
326 |
|
|
for (int i=0;i<nbpt;i++) delete (*lst)[i]; |
327 |
|
|
TOXFEM_POINT::remisecompteurid(); |
328 |
francois |
104 |
|
329 |
francois |
106 |
} |
330 |
|
|
|
331 |
francois |
222 |
double TOXFEM::calcul_distance(FEM_NOEUD* noeud,MG_ARETE* are,TOXFEM_POINT* pt,double precision) |
332 |
francois |
106 |
{ |
333 |
|
|
double tii,eps; |
334 |
|
|
are->inverser(tii,noeud->get_coord()); |
335 |
|
|
int compteur=0; |
336 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
337 |
|
|
do |
338 |
|
|
{ |
339 |
|
|
compteur++; |
340 |
|
|
double ti=tii; |
341 |
|
|
double xyz[3],dxyz[3],ddxyz[3]; |
342 |
|
|
are->deriver_seconde(ti,ddxyz,dxyz,xyz); |
343 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
344 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz[0],dxyz[1],dxyz[2]); |
345 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz[0],ddxyz[1],ddxyz[2]); |
346 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
347 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
348 |
|
|
eps=fabs(tii-ti); |
349 |
|
|
if (compteur>500) return 1e300; |
350 |
|
|
if (tii<are->get_tmin()) |
351 |
|
|
{ |
352 |
|
|
tii=are->get_tmin(); |
353 |
|
|
eps=0.; |
354 |
|
|
} |
355 |
|
|
if (tii>are->get_tmax()) |
356 |
|
|
{ |
357 |
|
|
tii=are->get_tmax(); |
358 |
|
|
eps=0.; |
359 |
|
|
} |
360 |
|
|
} |
361 |
|
|
while (eps>precision); |
362 |
|
|
double xyz[3],dxyz[3]; |
363 |
|
|
are->evaluer(tii,xyz); |
364 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
365 |
|
|
double distance=(Ct-Pt).get_longueur(); |
366 |
|
|
MG_FACE* face1=are->get_mg_coarete(0)->get_boucle()->get_mg_face(); |
367 |
|
|
MG_FACE* face2=are->get_mg_coarete(1)->get_boucle()->get_mg_face(); |
368 |
|
|
are->deriver(tii,dxyz); |
369 |
|
|
OT_VECTEUR_3D x1(dxyz[0],dxyz[1],dxyz[2]); |
370 |
|
|
OT_VECTEUR_3D x2(dxyz[0],dxyz[1],dxyz[2]); |
371 |
|
|
x1=are->get_mg_coarete(0)->get_orientation()*x1; |
372 |
|
|
x2=are->get_mg_coarete(1)->get_orientation()*x2; |
373 |
|
|
x1.norme(); |
374 |
|
|
x2.norme(); |
375 |
|
|
double uv1[2],uv2[2]; |
376 |
|
|
double normal1[3],normal2[3]; |
377 |
|
|
face1->inverser(uv1,xyz); |
378 |
|
|
face2->inverser(uv2,xyz); |
379 |
|
|
face1->calcul_normale_unitaire(uv1,normal1); |
380 |
|
|
face2->calcul_normale_unitaire(uv2,normal2); |
381 |
|
|
OT_VECTEUR_3D z1(normal1[0],normal1[1],normal1[2]); |
382 |
|
|
OT_VECTEUR_3D z2(normal2[0],normal2[1],normal2[2]); |
383 |
|
|
z1=face1->get_mg_coface(0)->get_orientation()*z1; |
384 |
|
|
z2=face2->get_mg_coface(0)->get_orientation()*z2; |
385 |
|
|
OT_VECTEUR_3D y1=z1&x1; |
386 |
|
|
OT_VECTEUR_3D y2=z2&x2; |
387 |
|
|
double test=(z1&z2)*x1; |
388 |
|
|
int signe=-1; |
389 |
|
|
OT_VECTEUR_3D dirpt=Pt-Ct; |
390 |
|
|
if (test>0) |
391 |
|
|
{if ((z1*dirpt>0.) || (z2*dirpt>0.)) signe=1;} |
392 |
|
|
else |
393 |
|
|
{if ((z1*dirpt>0.) && (z2*dirpt>0.)) signe=1;} |
394 |
|
|
return signe*distance; |
395 |
|
|
} |
396 |
|
|
|
397 |
francois |
222 |
double TOXFEM::calcul_distance(FEM_NOEUD* noeud,MG_FACE* face,TOXFEM_POINT* pt,double precision) |
398 |
francois |
106 |
{ |
399 |
|
|
double uvii[2],eps; |
400 |
|
|
pt->get_coord2(uvii); |
401 |
|
|
int compteur=0; |
402 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
403 |
|
|
double delta_u,delta_v; |
404 |
|
|
do |
405 |
|
|
{ |
406 |
|
|
compteur++; |
407 |
|
|
double uvi[2]; |
408 |
|
|
uvi[0]=uvii[0]; |
409 |
|
|
uvi[1]=uvii[1]; |
410 |
|
|
double xyzduu[3],xyzdvv[3],xyzduv[3],xyzdu[3],xyzdv[3],xyz[3]; |
411 |
|
|
face->deriver_seconde(uvi,xyzduu,xyzduv,xyzdvv,xyz,xyzdu,xyzdv); |
412 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
413 |
|
|
OT_VECTEUR_3D Su(xyzdu[0],xyzdu[1],xyzdu[2]); |
414 |
|
|
OT_VECTEUR_3D Sv(xyzdv[0],xyzdv[1],xyzdv[2]); |
415 |
|
|
OT_VECTEUR_3D Suu(xyzduu[0],xyzduu[1],xyzduu[2]); |
416 |
|
|
OT_VECTEUR_3D Suv(xyzduv[0],xyzduv[1],xyzduv[2]); |
417 |
|
|
OT_VECTEUR_3D Svv(xyzdvv[0],xyzdvv[1],xyzdvv[2]); |
418 |
|
|
OT_VECTEUR_3D Distance = S-Pt; |
419 |
|
|
double a[4],b[2]; |
420 |
|
|
a[0]=Su.get_longueur2()+Distance*Suu; |
421 |
|
|
a[1]=Su*Sv+Distance*Suv; |
422 |
|
|
a[2]=Su*Sv+Distance*Suv; |
423 |
|
|
a[3]=Sv.get_longueur2()+Distance*Svv; |
424 |
|
|
b[0]=Distance*Su;b[0]=-b[0]; |
425 |
|
|
b[1]=Distance*Sv;b[1]=-b[1]; |
426 |
|
|
double deltau,deltav; |
427 |
|
|
double denominateur_delta=(a[0]*a[3]-a[2]*a[1]); |
428 |
|
|
if (a[0]<1E-12) |
429 |
|
|
deltau=0; |
430 |
|
|
else delta_u=(b[0]*a[3]-b[1]*a[1])/denominateur_delta; |
431 |
|
|
if (a[3]<1E-12) |
432 |
|
|
deltav=0; |
433 |
|
|
else delta_v=(a[0]*b[1]-a[2]*b[0])/denominateur_delta; |
434 |
|
|
/*if (fabs(denominateur_delta) < ( (fabs(a[0])+fabs(a[1])+fabs(a[2])+fabs(a[3]))*1e-12 ) ) |
435 |
|
|
return 1e300;*/ |
436 |
|
|
uvii[0]=uvi[0]+delta_u; |
437 |
|
|
uvii[1]=uvi[1]+delta_v; |
438 |
|
|
if (face->get_surface()->est_periodique_u()==1) |
439 |
|
|
{ |
440 |
|
|
if(uvii[0]<0.) uvii[0]=face->get_surface()->get_periode_u()-uvii[0]; |
441 |
|
|
if(uvii[0]>face->get_surface()->get_periode_u()) uvii[0]=uvii[0]-face->get_surface()->get_periode_u(); |
442 |
|
|
} |
443 |
|
|
if (face->get_surface()->est_periodique_v()==1) |
444 |
|
|
{ |
445 |
|
|
if(uvii[1]<0.) uvii[0]=face->get_surface()->get_periode_v()-uvii[1]; |
446 |
|
|
if(uvii[1]>face->get_surface()->get_periode_v()) uvii[1]=uvii[1]-face->get_surface()->get_periode_v(); |
447 |
|
|
} |
448 |
|
|
delta_u=uvii[0]-uvi[0]; |
449 |
|
|
delta_v=uvii[1]-uvi[1]; |
450 |
|
|
if (compteur>500) return 1e300; |
451 |
|
|
} |
452 |
|
|
|
453 |
|
|
while ((fabs(delta_u)>precision)||(fabs(delta_v)>precision)); |
454 |
|
|
double xyz[3]; |
455 |
|
|
face->evaluer(uvii,xyz); |
456 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
457 |
|
|
double distance=(S-Pt).get_longueur(); |
458 |
|
|
return distance; |
459 |
|
|
} |
460 |
|
|
|
461 |
francois |
222 |
void TOXFEM::levelsetn(TPL_MAP_ENTITE<MG_ELEMENT_TOPOLOGIQUE*> *lsttopo,vector<MG_FACE*> *lstface,class FEM_SOLUTION* solution,int numsol) |
462 |
francois |
106 |
{ |
463 |
|
|
solution->active_solution(numsol); |
464 |
|
|
int nbface=lstface->size(); |
465 |
|
|
if (nbface==0) return; |
466 |
|
|
vector<TOXFEM_POINT*> lst; |
467 |
francois |
222 |
BOITE_2D boite=ot.get_boite_2D((*lstface)[0]); |
468 |
|
|
for (int iface=1;iface<nbface;iface++) |
469 |
francois |
104 |
{ |
470 |
francois |
222 |
MG_FACE* face=(*lstface)[iface]; |
471 |
|
|
BOITE_2D boiteface=ot.get_boite_2D(face); |
472 |
|
|
boite=boite+boiteface; |
473 |
|
|
} |
474 |
|
|
MG_FACE* face=(*lstface)[0]; |
475 |
|
|
int trouve=0; |
476 |
|
|
int orientation; |
477 |
|
|
int j=0; |
478 |
|
|
do |
479 |
|
|
{ |
480 |
|
|
MG_COFACE* coface=face->get_mg_coface(j); |
481 |
|
|
MG_VOLUME* vol=coface->get_coquille()->get_mg_volume(); |
482 |
|
|
if (lsttopo->existe(vol)) |
483 |
francois |
104 |
{ |
484 |
francois |
222 |
orientation=coface->get_orientation(); |
485 |
|
|
trouve=1; |
486 |
francois |
106 |
} |
487 |
francois |
222 |
j++; |
488 |
francois |
104 |
} |
489 |
francois |
222 |
while (trouve==0); |
490 |
|
|
double umin=boite.get_xmin(); |
491 |
|
|
double umax=boite.get_xmax(); |
492 |
|
|
double vmin=boite.get_ymin(); |
493 |
|
|
double vmax=boite.get_ymax(); |
494 |
francois |
106 |
if (face->get_surface()->est_periodique_u()) |
495 |
francois |
104 |
{ |
496 |
francois |
106 |
umin=0; |
497 |
|
|
umax=face->get_surface()->get_periode_u(); |
498 |
francois |
104 |
} |
499 |
francois |
106 |
if (face->get_surface()->est_periodique_v()) |
500 |
|
|
{ |
501 |
|
|
vmin=0; |
502 |
|
|
vmax=face->get_surface()->get_periode_v(); |
503 |
|
|
} |
504 |
|
|
for (int i=-5;i<NPAS+5;i++) |
505 |
|
|
for (int j=-5;j<NPAS+5;j++) |
506 |
|
|
{ |
507 |
francois |
222 |
double uv[2]; |
508 |
francois |
106 |
uv[0]=umin+i*1.0/NPAS*(umax-umin); |
509 |
|
|
uv[1]=vmin+j*1.0/NPAS*(vmax-vmin); |
510 |
|
|
double xyz[3]; |
511 |
|
|
if ((face->valide_parametre_u(uv[0])) && (face->valide_parametre_u(uv[1]))) |
512 |
|
|
{ |
513 |
|
|
face->evaluer(uv,xyz); |
514 |
|
|
TOXFEM_POINT *pt=new TOXFEM_POINT(xyz[0],xyz[1],xyz[2],face); |
515 |
|
|
lst.push_back(pt); |
516 |
|
|
} |
517 |
|
|
} |
518 |
francois |
222 |
calcullevelsetpremierepasse(solution,numsol,face,orientation,&lst,0,lst.size()); |
519 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
520 |
|
|
etendrelevelset(solution,numsol); |
521 |
francois |
104 |
} |
522 |
francois |
106 |
|
523 |
francois |
222 |
void TOXFEM::etendrelevelset(FEM_SOLUTION* sol,int numsol) |
524 |
|
|
{ |
525 |
|
|
sol->active_solution(numsol); |
526 |
|
|
|
527 |
|
|
|
528 |
|
|
LISTE_FM know; |
529 |
|
|
LISTE_FM trial; |
530 |
|
|
LISTE_FM far; |
531 |
|
|
LISTE_FM exterieur; |
532 |
|
|
LISTE_FM_TRI trialtri; |
533 |
|
|
LISTE_FM_TRI_ID trialtriid; |
534 |
|
|
|
535 |
|
|
|
536 |
|
|
LISTE_FEM_TETRA::iterator ittet; |
537 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
538 |
|
|
{ |
539 |
|
|
tet->change_solution(0.); |
540 |
|
|
int numsol=0; |
541 |
|
|
if (tet->get_fem_noeud(0)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(0)->change_numero(1);} else tet->get_fem_noeud(0)->change_numero(0); |
542 |
|
|
if (tet->get_fem_noeud(1)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(1)->change_numero(1);} else tet->get_fem_noeud(1)->change_numero(0); |
543 |
|
|
if (tet->get_fem_noeud(2)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(2)->change_numero(1);} else tet->get_fem_noeud(2)->change_numero(0); |
544 |
|
|
if (tet->get_fem_noeud(3)->get_solution()<1e200) {numsol++;tet->get_fem_noeud(3)->change_numero(1);} else tet->get_fem_noeud(3)->change_numero(0); |
545 |
|
|
if (numsol==4) |
546 |
|
|
ajouter_liste(know,tet); |
547 |
|
|
|
548 |
|
|
else if (numsol==3) |
549 |
|
|
{ |
550 |
|
|
if (tet->get_fem_noeud(0)->get_numero()==0) tet->change_numero(0); |
551 |
|
|
else if (tet->get_fem_noeud(1)->get_numero()==0) tet->change_numero(1); |
552 |
|
|
else if (tet->get_fem_noeud(2)->get_numero()==0) tet->change_numero(2); |
553 |
|
|
else tet->change_numero(3); |
554 |
|
|
ajouter_liste(trial,tet); |
555 |
|
|
} |
556 |
|
|
else |
557 |
|
|
ajouter_liste(far,tet); |
558 |
|
|
|
559 |
|
|
} |
560 |
|
|
for (LISTE_FM::iterator i=trial.begin();i!=trial.end();i++) |
561 |
|
|
{ |
562 |
|
|
FEM_TETRA* tet=*i; |
563 |
|
|
int signe; |
564 |
|
|
double sol=resoudgradT(tet,&signe); |
565 |
|
|
if (fabs(sol)>0.00000001) |
566 |
|
|
{ |
567 |
|
|
if (fabs(sol)<fabs(tet->get_fem_noeud(tet->get_numero())->get_solution())) |
568 |
|
|
{ |
569 |
|
|
tet->get_fem_noeud(tet->get_numero())->change_solution(sol); |
570 |
|
|
ajouter_liste(trialtri,trialtriid,tet,fabs(tet->get_fem_noeud(tet->get_numero())->get_solution())); |
571 |
|
|
} |
572 |
|
|
} |
573 |
|
|
else |
574 |
|
|
{ |
575 |
|
|
ajouter_liste(exterieur,tet); |
576 |
|
|
tet->change_solution(1e300); |
577 |
|
|
} |
578 |
|
|
} |
579 |
|
|
int fin=0; |
580 |
|
|
LISTE_FM_TRI::iterator itfin=trialtri.end(); |
581 |
|
|
itfin--; |
582 |
|
|
double longref=(*itfin).first; |
583 |
|
|
do |
584 |
|
|
{ |
585 |
|
|
LISTE_FM_TRI::iterator it=trialtri.begin(); |
586 |
|
|
FEM_TETRA* tet=(*it).second; |
587 |
|
|
double longcourant=(*it).first; |
588 |
|
|
supprimer_liste(trialtri,trialtriid,tet); |
589 |
|
|
ajouter_liste(know,tet); |
590 |
|
|
FEM_NOEUD* noeud=tet->get_fem_noeud(tet->get_numero()); |
591 |
|
|
noeud->change_numero(1); |
592 |
|
|
if (noeud->get_solution()>20000) |
593 |
|
|
cout << "BUGGGGGGG" <<endl; |
594 |
|
|
int nbtetra=noeud->get_lien_tetra()->get_nb(); |
595 |
|
|
for (int i=0;i<nbtetra;i++) |
596 |
|
|
{ |
597 |
|
|
FEM_TETRA* tet2=noeud->get_lien_tetra()->get(i); |
598 |
|
|
if (tet2==tet) continue; |
599 |
|
|
LISTE_FM_TRI_ID::iterator it=trialtriid.find(tet2->get_id()); |
600 |
|
|
if (it!=trialtriid.end()) |
601 |
|
|
{ |
602 |
|
|
int signe; |
603 |
|
|
double sol=resoudgradT(tet2,&signe); |
604 |
|
|
double solution=tet2->get_fem_noeud(tet2->get_numero())->get_solution(); |
605 |
|
|
if (fabs(sol)>0.00000001) |
606 |
|
|
if (!((solution<1e200)&&(sol*solution<0))) |
607 |
|
|
if (fabs(sol)<fabs(solution)) |
608 |
|
|
{ |
609 |
|
|
supprimer_liste(trialtri,trialtriid,tet2); |
610 |
|
|
ajouter_liste(trialtri,trialtriid,tet2,fabs(sol)); |
611 |
|
|
tet2->get_fem_noeud(tet2->get_numero())->change_solution(sol); |
612 |
|
|
} |
613 |
|
|
} |
614 |
|
|
LISTE_FM::iterator it2=find(far.begin(),far.end(),tet2); |
615 |
|
|
if (it2!=far.end()) |
616 |
|
|
{ |
617 |
|
|
int numsol=0; |
618 |
|
|
if (tet2->get_fem_noeud(0)->get_numero()==1) numsol++; |
619 |
|
|
if (tet2->get_fem_noeud(1)->get_numero()==1) numsol++; |
620 |
|
|
if (tet2->get_fem_noeud(2)->get_numero()==1) numsol++; |
621 |
|
|
if (tet2->get_fem_noeud(3)->get_numero()==1) numsol++; |
622 |
|
|
//if (numsol==4) |
623 |
|
|
//cout << " BUG " <<endl; |
624 |
|
|
if (numsol==3) |
625 |
|
|
{ |
626 |
|
|
if (tet2->get_fem_noeud(0)->get_numero()==0) tet2->change_numero(0); |
627 |
|
|
else if (tet2->get_fem_noeud(1)->get_numero()==0) tet2->change_numero(1); |
628 |
|
|
else if (tet2->get_fem_noeud(2)->get_numero()==0) tet2->change_numero(2); |
629 |
|
|
else tet2->change_numero(3); |
630 |
|
|
int signe; |
631 |
|
|
double sol=resoudgradT(tet2,&signe); |
632 |
|
|
double ancsol=tet2->get_fem_noeud(tet2->get_numero())->get_solution(); |
633 |
|
|
if (fabs(sol)>0.00000001) |
634 |
|
|
{ |
635 |
|
|
if (!((ancsol<1e200) && (ancsol*sol<0.) )) |
636 |
|
|
{ |
637 |
|
|
tet2->get_fem_noeud(tet2->get_numero())->change_solution(sol); |
638 |
|
|
supprimer_liste(far,tet2); |
639 |
|
|
ajouter_liste(trialtri,trialtriid,tet2,fabs(sol)); |
640 |
|
|
} |
641 |
|
|
} |
642 |
|
|
else |
643 |
|
|
{ |
644 |
|
|
tet2->change_solution(1e300); |
645 |
|
|
ajouter_liste(exterieur,tet2); |
646 |
|
|
} |
647 |
|
|
} |
648 |
|
|
} |
649 |
|
|
} |
650 |
|
|
if (trialtri.size()==0) fin=1; |
651 |
|
|
if (exterieur.size()>0) |
652 |
|
|
if (fin==0) |
653 |
|
|
if (longcourant>longref) |
654 |
|
|
{ |
655 |
|
|
int nombre=exterieur.size(); |
656 |
|
|
for (int i=0;i<nombre;i++) |
657 |
|
|
{ |
658 |
|
|
FEM_TETRA* tet2=(*(exterieur.begin())); |
659 |
|
|
supprimer_liste(exterieur,tet2); |
660 |
|
|
ajouter_liste(know,tet2); |
661 |
|
|
for (int nd=0;nd<4;nd++) |
662 |
|
|
{ |
663 |
|
|
FEM_NOEUD* noeud=tet2->get_fem_noeud(nd); |
664 |
|
|
int nbtetra=noeud->get_lien_tetra()->get_nb(); |
665 |
|
|
for (int i=0;i<nbtetra;i++) |
666 |
|
|
{ |
667 |
|
|
FEM_TETRA* tet3=noeud->get_lien_tetra()->get(i); |
668 |
|
|
if (tet2==tet3) continue; |
669 |
|
|
LISTE_FM::iterator it2=find(far.begin(),far.end(),tet3); |
670 |
|
|
if (it2!=far.end()) |
671 |
|
|
{ |
672 |
|
|
supprimer_liste(far,tet3); |
673 |
|
|
ajouter_liste(exterieur,tet3); |
674 |
|
|
tet3->change_solution(1e300); |
675 |
|
|
} |
676 |
|
|
} |
677 |
|
|
} |
678 |
|
|
} |
679 |
|
|
LISTE_FM_TRI::iterator itfin=trialtri.end(); |
680 |
|
|
itfin--; |
681 |
|
|
longref=(*itfin).first; |
682 |
|
|
} |
683 |
|
|
} |
684 |
|
|
while (fin==0); |
685 |
|
|
LISTE_FEM_NOEUD::iterator itnoeud; |
686 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
687 |
|
|
noeud->change_numero(0); |
688 |
|
|
for (FEM_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
689 |
|
|
{ |
690 |
|
|
if (tet->get_solution()>1e200) continue; |
691 |
|
|
tet->get_fem_noeud(0)->change_numero(1); |
692 |
|
|
tet->get_fem_noeud(1)->change_numero(1); |
693 |
|
|
tet->get_fem_noeud(2)->change_numero(1); |
694 |
|
|
tet->get_fem_noeud(3)->change_numero(1); |
695 |
|
|
} |
696 |
|
|
int i=0; |
697 |
|
|
for (FEM_NOEUD* noeud=mai->get_premier_noeud(itnoeud);noeud!=NULL;noeud=mai->get_suivant_noeud(itnoeud)) |
698 |
|
|
{ |
699 |
|
|
if (noeud->get_numero()==1) sol->ecrire(i,numsol,noeud->get_solution()); else sol->ecrire(i,numsol,1e300); |
700 |
|
|
++i; |
701 |
|
|
} |
702 |
|
|
} |
703 |
|
|
|
704 |
|
|
void TOXFEM::ajouter_liste(LISTE_FM_TRI &lst,LISTE_FM_TRI_ID &lstid,FEM_TETRA* tet,double val) |
705 |
|
|
{ |
706 |
|
|
pair<double,FEM_TETRA*> p(val,tet); |
707 |
|
|
LISTE_FM_TRI::iterator it=lst.insert(p); |
708 |
|
|
lstid[tet->get_id()]=it; |
709 |
|
|
} |
710 |
|
|
|
711 |
|
|
void TOXFEM::supprimer_liste(LISTE_FM_TRI &lst,LISTE_FM_TRI_ID &lstid,FEM_TETRA* tet) |
712 |
|
|
{ |
713 |
|
|
LISTE_FM_TRI::iterator it2=lstid[tet->get_id()]; |
714 |
|
|
LISTE_FM_TRI_ID::iterator it3=lstid.find(tet->get_id()); |
715 |
|
|
lstid.erase(it3); |
716 |
|
|
lst.erase(it2); |
717 |
|
|
} |
718 |
|
|
|
719 |
|
|
void TOXFEM::ajouter_liste(LISTE_FM& lst,FEM_TETRA* tet) |
720 |
|
|
{ |
721 |
|
|
lst.push_back(tet); |
722 |
|
|
} |
723 |
|
|
|
724 |
|
|
void TOXFEM::supprimer_liste(LISTE_FM& lst,FEM_TETRA* tet) |
725 |
|
|
{ |
726 |
|
|
LISTE_FM::iterator it=find(lst.begin(),lst.end(),tet); |
727 |
|
|
if (it!=lst.end()) lst.erase(it); |
728 |
|
|
} |
729 |
|
|
|
730 |
|
|
|
731 |
|
|
|
732 |
|
|
double TOXFEM::resoudgradT(FEM_TETRA* tet,int *signe) |
733 |
|
|
{ |
734 |
|
|
double j[9]; |
735 |
|
|
double N[12]; |
736 |
|
|
double jN[12]={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}; |
737 |
|
|
double T[4]; |
738 |
|
|
double uv[2]={0.25,0.25}; |
739 |
|
|
|
740 |
|
|
|
741 |
|
|
tet->get_inverse_jacob(j,uv); |
742 |
|
|
for (int i=0;i<3;i++) |
743 |
|
|
for (int k=0;k<4;k++) |
744 |
|
|
N[i*4+k]=tet->get_fonction_derive_interpolation(k+1,i+1,uv); |
745 |
|
|
int premier=0; |
746 |
|
|
double tmin=1e300; |
747 |
|
|
double tmax=-1e300; |
748 |
|
|
for (int i=0;i<4;i++) |
749 |
|
|
{ |
750 |
|
|
if (i==tet->get_numero()) continue; |
751 |
|
|
T[i]=tet->get_fem_noeud(i)->get_solution(); |
752 |
|
|
if (fabs(T[i])>0.000001) |
753 |
|
|
{ |
754 |
|
|
if (premier==0) |
755 |
|
|
if (T[i]>0) (*signe)=1; else (*signe)=-1; |
756 |
|
|
else if (T[i]*(*signe)<0) (*signe)=0; |
757 |
|
|
} |
758 |
|
|
T[i]=fabs(T[i]); |
759 |
|
|
if (tet->get_numero()!=i) |
760 |
|
|
{ |
761 |
|
|
if (T[i]<tmin) tmin=T[i]; |
762 |
|
|
if (T[i]>tmax) tmax=T[i]; |
763 |
|
|
} |
764 |
|
|
premier=1; |
765 |
|
|
} |
766 |
|
|
for (int i=0;i<3;i++) |
767 |
|
|
for (int k=0;k<4;k++) |
768 |
|
|
for (int l=0;l<3;l++) |
769 |
|
|
jN[i*4+k]=jN[i*4+k]+j[i*3+l]*N[l*4+k]; |
770 |
|
|
double a=0.,b=0.,c=-1.; |
771 |
|
|
for (int i=0;i<3;i++) |
772 |
|
|
{ |
773 |
|
|
double coef=0.; |
774 |
|
|
double coefinc=0.; |
775 |
|
|
for (int l=0;l<4;l++) |
776 |
|
|
{ |
777 |
|
|
if (tet->get_numero()!=l) coef=coef+jN[i*4+l]*T[l]; |
778 |
|
|
else coefinc=coefinc+jN[i*4+l]; |
779 |
|
|
} |
780 |
|
|
c=c+coef*coef; |
781 |
|
|
a=a+coefinc*coefinc; |
782 |
|
|
b=b+2*coef*coefinc; |
783 |
|
|
} |
784 |
|
|
/*if (*signe==0) |
785 |
|
|
cout << "attention " <<endl;*/ |
786 |
|
|
double det=b*b-4.*a*c; |
787 |
|
|
if (det<0.) det=0.; else det=sqrt(det); |
788 |
|
|
double sol1=(-b-det)/2./a; |
789 |
|
|
double sol2=(-b+det)/2./a; |
790 |
|
|
double sol=sol1; |
791 |
|
|
if (sol2>sol1) sol=sol2; |
792 |
|
|
if (sol<tmin*0.99) |
793 |
|
|
sol=0.; |
794 |
|
|
sol=sol*(*signe); |
795 |
|
|
return sol; |
796 |
|
|
} |