1 |
bechet |
105 |
#include "gestionversion.h" |
2 |
francois |
104 |
#include "toxfem.h" |
3 |
|
|
#include "MagXchange.h" |
4 |
|
|
#include "mg_file.h" |
5 |
|
|
#include "ot_mathematique.h" |
6 |
|
|
#include "tpl_map_entite.h" |
7 |
|
|
#include "tpl_octree.h" |
8 |
francois |
106 |
#include "toxfem_point.h" |
9 |
|
|
#include "vct.h" |
10 |
francois |
104 |
#include <math.h> |
11 |
|
|
|
12 |
francois |
106 |
#define NPAS 50 |
13 |
francois |
104 |
|
14 |
francois |
106 |
TOXFEM::TOXFEM() |
15 |
francois |
104 |
{ |
16 |
|
|
} |
17 |
|
|
|
18 |
|
|
|
19 |
francois |
106 |
TOXFEM::~TOXFEM() |
20 |
francois |
104 |
{ |
21 |
|
|
} |
22 |
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
francois |
106 |
int TOXFEM::estdansletetra(MG_TETRA *tet,double x,double y, double z) |
26 |
francois |
104 |
{ |
27 |
|
|
double* xyz1=tet->get_noeud1()->get_coord(); |
28 |
|
|
double* xyz2=tet->get_noeud2()->get_coord(); |
29 |
|
|
double* xyz3=tet->get_noeud3()->get_coord(); |
30 |
|
|
double* xyz4=tet->get_noeud4()->get_coord(); |
31 |
|
|
OT_VECTEUR_3D v1(xyz2[0]-xyz1[0],xyz2[1]-xyz1[1],xyz2[2]-xyz1[2]); |
32 |
|
|
OT_VECTEUR_3D v2(xyz3[0]-xyz1[0],xyz3[1]-xyz1[1],xyz3[2]-xyz1[2]); |
33 |
|
|
OT_VECTEUR_3D v3(xyz4[0]-xyz1[0],xyz4[1]-xyz1[1],xyz4[2]-xyz1[2]); |
34 |
|
|
OT_VECTEUR_3D v4(x-xyz1[0],y-xyz1[1],z-xyz1[2]); |
35 |
|
|
OT_MATRICE_3D mat(v1,v2,v3); |
36 |
|
|
OT_MATRICE_3D mat1(v4,v2,v3); |
37 |
|
|
OT_MATRICE_3D mat2(v1,v4,v3); |
38 |
|
|
OT_MATRICE_3D mat3(v1,v2,v4); |
39 |
|
|
double det=mat.get_determinant(); |
40 |
|
|
double xsi=mat1.get_determinant()/det; |
41 |
|
|
double eta=mat2.get_determinant()/det; |
42 |
|
|
double dseta=mat3.get_determinant()/det; |
43 |
|
|
int reponse=1; |
44 |
|
|
if (xsi<-0.000001) reponse=0; |
45 |
|
|
if (eta<-0.000001) reponse=0; |
46 |
|
|
if (dseta<-0.000001) reponse=0; |
47 |
|
|
if (xsi+eta+dseta>1.000001) reponse=0; |
48 |
|
|
return reponse; |
49 |
|
|
|
50 |
|
|
} |
51 |
|
|
|
52 |
francois |
106 |
double TOXFEM::calculdist(double *n,double x,double y,double z,MG_NOEUD* noeud,MG_TETRA* tet) |
53 |
francois |
104 |
{ |
54 |
|
|
double* xyz=noeud->get_coord(); |
55 |
|
|
/*double t=(-n[0]*xyz[0]-n[1]*xyz[1]-n[2]*xyz[2]-n[3])/(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]); |
56 |
|
|
double xyz1[3]; |
57 |
|
|
xyz1[0]=xyz[0]+t*n[0]; |
58 |
|
|
xyz1[1]=xyz[1]+t*n[1]; |
59 |
|
|
xyz1[2]=xyz[2]+t*n[2]; |
60 |
|
|
double dist; |
61 |
|
|
if (estdansletetra(tet,xyz1[0],xyz1[1],xyz1[2])) |
62 |
|
|
dist=sqrt((xyz[0]-xyz1[0])*(xyz[0]-xyz1[0])+(xyz[1]-xyz1[1])*(xyz[1]-xyz1[1])+(xyz[2]-xyz1[2])*(xyz[2]-xyz1[2])); |
63 |
|
|
else*/ |
64 |
|
|
double dist=sqrt((xyz[0]-x)*(xyz[0]-x)+(xyz[1]-y)*(xyz[1]-y)+(xyz[2]-z)*(xyz[2]-z)); |
65 |
|
|
OT_VECTEUR_3D vec1(n[0],n[1],n[2]); |
66 |
|
|
OT_VECTEUR_3D vec2(xyz[0]-x,xyz[1]-y,xyz[2]-z); |
67 |
|
|
double ps=vec1*vec2; |
68 |
|
|
if (ps<0.) dist=-dist; |
69 |
|
|
return dist; |
70 |
|
|
} |
71 |
|
|
|
72 |
francois |
106 |
void TOXFEM::importer(std::string nomfichier,class MagXchange* data,std::string nomfichierout) |
73 |
francois |
104 |
{ |
74 |
|
|
MG_FILE gest((char*)nomfichier.c_str()); |
75 |
francois |
106 |
mai=gest.get_mg_maillage(1); |
76 |
|
|
geo=gest.get_mg_geometrie(0); |
77 |
|
|
int nbface=geo->get_nb_mg_face(); |
78 |
francois |
104 |
int nb_noeud=mai->get_nb_mg_noeud(); |
79 |
|
|
std::string nomfichier2=nomfichier+".sol"; |
80 |
francois |
106 |
MG_SOLUTION* solution=new MG_SOLUTION(mai,nbface+1,(char*)nomfichier2.c_str(),nb_noeud,"VL"); |
81 |
|
|
solution->change_legende(0,"Peau"); |
82 |
|
|
for (int i=0;i<nbface;i++) |
83 |
|
|
{ |
84 |
|
|
char mess[255]; |
85 |
|
|
sprintf(mess,"Face%d",i); |
86 |
|
|
solution->change_legende(i+1,mess); |
87 |
|
|
} |
88 |
francois |
104 |
gest.ajouter_mg_solution(solution); |
89 |
|
|
double xmin=1e300,ymin=1e300,zmin=1e308; |
90 |
|
|
double xmax=-1e300,ymax=-1e300,zmax=-1e308; |
91 |
|
|
TPL_MAP_ENTITE<MG_NOEUD*> lst_noeud; |
92 |
|
|
for (int i=0;i<nb_noeud;i++) |
93 |
|
|
{ |
94 |
|
|
MG_NOEUD* noeud=mai->get_mg_noeud(i); |
95 |
|
|
double* xyz=noeud->get_coord(); |
96 |
|
|
if (xyz[0]<xmin) xmin=xyz[0]; |
97 |
|
|
if (xyz[1]<ymin) ymin=xyz[1]; |
98 |
|
|
if (xyz[2]<zmin) zmin=xyz[2]; |
99 |
|
|
if (xyz[0]>xmax) xmax=xyz[0]; |
100 |
|
|
if (xyz[1]>ymax) ymax=xyz[1]; |
101 |
|
|
if (xyz[2]>zmax) zmax=xyz[2]; |
102 |
francois |
106 |
for (int j=0;j<nbface+1;j++) |
103 |
|
|
solution->ecrire(i,j,1e300); |
104 |
francois |
104 |
lst_noeud.ajouter(noeud); |
105 |
|
|
} |
106 |
|
|
octree.initialiser(&lst_noeud,1,xmin,ymin,zmin,xmax,ymax,zmax); |
107 |
|
|
int nb_tetra=mai->get_nb_mg_tetra(); |
108 |
|
|
for (int i=0;i<nb_tetra;i++) |
109 |
|
|
{ |
110 |
|
|
MG_TETRA* tet=mai->get_mg_tetra(i); |
111 |
|
|
octree.inserer(tet); |
112 |
|
|
} |
113 |
francois |
106 |
levelset0(solution,0); |
114 |
|
|
for (int i=0;i<nbface;i++) |
115 |
|
|
{ |
116 |
|
|
vector<MG_FACE*> lstface; |
117 |
|
|
MG_FACE* face=geo->get_mg_face(i); |
118 |
|
|
TPL_LISTE_ENTITE<double> lst; |
119 |
|
|
int type=face->get_surface()->get_type_geometrique(lst); |
120 |
|
|
int idem=0; |
121 |
|
|
for (int j=0;j<i;j++) |
122 |
|
|
{ |
123 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
124 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
125 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
126 |
|
|
if (type==type2) |
127 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
128 |
|
|
{ |
129 |
|
|
int diff=0; |
130 |
|
|
for (int i=0;i<lst.get_nb();i++) |
131 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
132 |
|
|
if (diff==0) idem=1; |
133 |
|
|
} |
134 |
|
|
} |
135 |
|
|
if (!idem) lstface.push_back(geo->get_mg_face(i)); |
136 |
|
|
for (int j=i+1;j<nbface;j++) |
137 |
|
|
{ |
138 |
|
|
TPL_LISTE_ENTITE<double> lst2; |
139 |
|
|
MG_FACE* face2=geo->get_mg_face(j); |
140 |
|
|
int type2=face2->get_surface()->get_type_geometrique(lst2); |
141 |
|
|
if (type==type2) |
142 |
|
|
if (lst.get_nb()==lst2.get_nb()) |
143 |
|
|
{ |
144 |
|
|
int diff=0; |
145 |
|
|
for (int i=0;i<lst.get_nb();i++) |
146 |
|
|
if (fabs(lst.get(i)-lst2.get(i))>0.000001) diff=1; |
147 |
|
|
if (diff==0) lstface.push_back(face2); |
148 |
|
|
} |
149 |
|
|
} |
150 |
|
|
levelsetn(&lstface,solution,i+1); |
151 |
|
|
} |
152 |
|
|
if (nomfichierout!="") gest.enregistrer((char*)nomfichierout.c_str()); |
153 |
|
|
if (data==NULL) return; |
154 |
|
|
for (int i=0;i<nb_noeud;i++) |
155 |
|
|
{ |
156 |
|
|
MG_NOEUD* noeud=mai->get_mg_noeud(i); |
157 |
|
|
MagNode *xfemnode; |
158 |
|
|
int nbsol=0; |
159 |
|
|
for (int j=0;j<nbface+1;j++) |
160 |
|
|
if (solution->lire(i,j)<1e200) nbsol++; |
161 |
|
|
if (nbsol>0) |
162 |
|
|
{ |
163 |
|
|
xfemnode=new MagNode(nbsol); |
164 |
|
|
int isol=0; |
165 |
|
|
for (int j=0;j<nbface+1;j++) |
166 |
|
|
if (solution->lire(i,j)<1e200) |
167 |
|
|
{ |
168 |
|
|
xfemnode->values()[isol]=solution->lire(i,j); |
169 |
|
|
xfemnode->idvalues()[isol]=j; |
170 |
|
|
isol++; |
171 |
|
|
} |
172 |
|
|
} // 1 valeur de levelset |
173 |
|
|
else |
174 |
|
|
xfemnode=new MagNode(0); // 0 valeur de levelset |
175 |
|
|
double * posxfem=xfemnode->position(); |
176 |
|
|
for (int i=0;i<3;++i) posxfem[i]=noeud->get_coord()[i]; |
177 |
|
|
xfemnode->id(noeud->get_id()); |
178 |
|
|
data->addnode(*xfemnode,true); |
179 |
|
|
delete xfemnode; |
180 |
|
|
} |
181 |
|
|
int nbtetra=mai->get_nb_mg_tetra(); |
182 |
|
|
for (int i=0;i<nbtetra;i++) |
183 |
|
|
{ |
184 |
|
|
MG_TETRA* tet=mai->get_mg_tetra(i); |
185 |
|
|
MagElement xfemele(MagElement::TETRAHEDRON); |
186 |
|
|
xfemele.nodes()[0]=tet->get_noeud1()->get_id(); |
187 |
|
|
xfemele.nodes()[1]=tet->get_noeud2()->get_id(); |
188 |
|
|
xfemele.nodes()[2]=tet->get_noeud3()->get_id(); |
189 |
|
|
xfemele.nodes()[3]=tet->get_noeud4()->get_id(); |
190 |
|
|
data->addelement(xfemele); |
191 |
|
|
} |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
void TOXFEM::levelset0(MG_SOLUTION *solution,int numsol) |
195 |
|
|
{ |
196 |
|
|
solution->active_solution(numsol); |
197 |
francois |
104 |
int nbface=geo->get_nb_mg_face(); |
198 |
francois |
106 |
vector<TOXFEM_POINT*> lst; |
199 |
francois |
104 |
for (int iface=0;iface<nbface;iface++) |
200 |
|
|
{ |
201 |
francois |
106 |
MG_FACE* face=geo->get_mg_face(iface); |
202 |
|
|
int nbpoint=lst.size(); |
203 |
francois |
104 |
TPL_SET<MG_ELEMENT_MAILLAGE*>::ITERATEUR it; |
204 |
|
|
for (MG_ELEMENT_MAILLAGE* ele=face->get_lien_maillage()->get_premier(it);ele!=NULL;ele=face->get_lien_maillage()->get_suivant(it)) |
205 |
|
|
{ |
206 |
|
|
MG_TRIANGLE *tri=(MG_TRIANGLE*)ele; |
207 |
francois |
106 |
TOXFEM_POINT *pt1=new TOXFEM_POINT(tri->get_noeud1()->get_x(),tri->get_noeud1()->get_y(),tri->get_noeud1()->get_z(),tri->get_noeud1()->get_lien_topologie()); |
208 |
|
|
TOXFEM_POINT *pt2=new TOXFEM_POINT(tri->get_noeud2()->get_x(),tri->get_noeud2()->get_y(),tri->get_noeud2()->get_z(),tri->get_noeud2()->get_lien_topologie()); |
209 |
|
|
TOXFEM_POINT *pt3=new TOXFEM_POINT(tri->get_noeud3()->get_x(),tri->get_noeud3()->get_y(),tri->get_noeud3()->get_z(),tri->get_noeud3()->get_lien_topologie()); |
210 |
|
|
lst.push_back(pt1); |
211 |
|
|
lst.push_back(pt2); |
212 |
|
|
lst.push_back(pt3); |
213 |
francois |
104 |
} |
214 |
francois |
106 |
calcullevelsetpremierepasse(solution,numsol,face,&lst,nbpoint,lst.size()); |
215 |
|
|
} |
216 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
217 |
|
|
} |
218 |
|
|
void TOXFEM::calcullevelsetpremierepasse(MG_SOLUTION *solution,int numsol,MG_FACE* face,vector<TOXFEM_POINT*> *lst,int n1,int n2) |
219 |
|
|
{ |
220 |
|
|
for (int i=n1;i<n2;i++) |
221 |
francois |
104 |
{ |
222 |
francois |
106 |
TOXFEM_POINT* pt=(*lst)[i]; |
223 |
francois |
104 |
double uv[2]; |
224 |
francois |
106 |
double xyz[3]; |
225 |
|
|
pt->get_coord3(xyz); |
226 |
francois |
104 |
double normal[4]; |
227 |
|
|
face->inverser(uv,xyz); |
228 |
francois |
106 |
normal[0]=normal[0]*face->get_mg_coface(0)->get_orientation(); |
229 |
|
|
normal[1]=normal[1]*face->get_mg_coface(0)->get_orientation(); |
230 |
|
|
normal[2]=normal[2]*face->get_mg_coface(0)->get_orientation(); |
231 |
francois |
104 |
face->calcul_normale_unitaire(uv,normal); |
232 |
|
|
TPL_MAP_ENTITE<MG_TETRA*> liste; |
233 |
|
|
octree.rechercher(xyz[0],xyz[1],xyz[2],0.,liste); |
234 |
|
|
int nb=liste.get_nb(); |
235 |
|
|
for (int k=0;k<nb;k++) |
236 |
|
|
{ |
237 |
|
|
MG_TETRA* tet=liste.get(k); |
238 |
|
|
if ( estdansletetra(tet,xyz[0],xyz[1],xyz[2])) |
239 |
|
|
{ |
240 |
|
|
normal[3]=-normal[0]*xyz[0]-normal[1]*xyz[1]-normal[2]*xyz[2]; |
241 |
|
|
double dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_noeud1(),tet); |
242 |
|
|
if (fabs(dist)<fabs(tet->get_noeud1()->get_solution())) |
243 |
francois |
106 |
{ |
244 |
francois |
104 |
tet->get_noeud1()->change_solution(dist); |
245 |
francois |
106 |
tet->get_noeud1()->change_nouveau_numero(pt->get_id()); |
246 |
|
|
pt->change_coord2(uv); |
247 |
|
|
} |
248 |
francois |
104 |
dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_noeud2(),tet); |
249 |
|
|
if (fabs(dist)<fabs(tet->get_noeud2()->get_solution())) |
250 |
francois |
106 |
{ |
251 |
francois |
104 |
tet->get_noeud2()->change_solution(dist); |
252 |
francois |
106 |
tet->get_noeud2()->change_nouveau_numero(pt->get_id()); |
253 |
|
|
pt->change_coord2(uv); |
254 |
|
|
} |
255 |
francois |
104 |
dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_noeud3(),tet); |
256 |
|
|
if (fabs(dist)<fabs(tet->get_noeud3()->get_solution())) |
257 |
francois |
106 |
{ |
258 |
francois |
104 |
tet->get_noeud3()->change_solution(dist); |
259 |
francois |
106 |
tet->get_noeud3()->change_nouveau_numero(pt->get_id()); |
260 |
|
|
pt->change_coord2(uv); |
261 |
|
|
} |
262 |
francois |
104 |
dist=calculdist(normal,xyz[0],xyz[1],xyz[2],tet->get_noeud4(),tet); |
263 |
|
|
if (fabs(dist)<fabs(tet->get_noeud4()->get_solution())) |
264 |
francois |
106 |
{ |
265 |
francois |
104 |
tet->get_noeud4()->change_solution(dist); |
266 |
francois |
106 |
tet->get_noeud4()->change_nouveau_numero(pt->get_id()); |
267 |
|
|
pt->change_coord2(uv); |
268 |
|
|
} |
269 |
francois |
104 |
|
270 |
|
|
} |
271 |
|
|
} |
272 |
|
|
} |
273 |
francois |
106 |
} |
274 |
|
|
|
275 |
|
|
void TOXFEM::calcullevelsetdeuxiemepasse(MG_SOLUTION *solution,int numsol,vector<TOXFEM_POINT*> *lst) |
276 |
|
|
{ |
277 |
|
|
LISTE_MG_TETRA::iterator ittet; |
278 |
|
|
for (MG_TETRA* tet=mai->get_premier_tetra(ittet);tet!=NULL;tet=mai->get_suivant_tetra(ittet)) |
279 |
|
|
{ |
280 |
|
|
MG_NOEUD *noeud[4]; |
281 |
|
|
noeud[0]=tet->get_noeud1(); |
282 |
|
|
noeud[1]=tet->get_noeud2(); |
283 |
|
|
noeud[2]=tet->get_noeud3(); |
284 |
|
|
noeud[3]=tet->get_noeud4(); |
285 |
|
|
for (int i=0;i<4;i++) |
286 |
|
|
if (noeud[i]->get_solution()<1e250) |
287 |
|
|
{ |
288 |
|
|
TOXFEM_POINT* pt=(*lst)[noeud[i]->get_nouveau_numero()]; |
289 |
|
|
int dim=pt->get_mg_element_topologique()->get_dimension(); |
290 |
|
|
if (dim==2) |
291 |
|
|
{ |
292 |
|
|
MG_FACE* face=(MG_FACE*)pt->get_mg_element_topologique(); |
293 |
|
|
double dist=calcul_distance(noeud[i],face,pt); |
294 |
|
|
int signe=1; |
295 |
|
|
if (noeud[i]->get_solution()<0) signe=-1; |
296 |
|
|
noeud[i]->change_solution(signe*dist); |
297 |
|
|
} |
298 |
|
|
if (dim==1) |
299 |
|
|
{ |
300 |
|
|
MG_ARETE* arete=(MG_ARETE*)pt->get_mg_element_topologique(); |
301 |
|
|
double dist=calcul_distance(noeud[i],arete,pt); |
302 |
|
|
noeud[i]->change_solution(dist); |
303 |
|
|
} |
304 |
|
|
if (dim==0) |
305 |
|
|
{ |
306 |
|
|
MG_SOMMET* sommet=(MG_SOMMET*)pt->get_mg_element_topologique(); |
307 |
|
|
MG_ARETE* arete=sommet->get_mg_cosommet(0)->get_arete(); |
308 |
|
|
double dist=calcul_distance(noeud[i],arete,pt); |
309 |
|
|
noeud[i]->change_solution(dist); |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
} |
313 |
francois |
104 |
} |
314 |
francois |
106 |
int nb_noeud=mai->get_nb_mg_noeud(); |
315 |
francois |
104 |
for (int i=0;i<nb_noeud;i++) |
316 |
|
|
{ |
317 |
|
|
MG_NOEUD* noeud=mai->get_mg_noeud(i); |
318 |
francois |
106 |
solution->ecrire(i,numsol,noeud->get_solution()); |
319 |
francois |
104 |
} |
320 |
francois |
106 |
int nbpt=(*lst).size(); |
321 |
|
|
for (int i=0;i<nbpt;i++) delete (*lst)[i]; |
322 |
|
|
TOXFEM_POINT::remisecompteurid(); |
323 |
francois |
104 |
|
324 |
francois |
106 |
} |
325 |
|
|
|
326 |
|
|
double TOXFEM::calcul_distance(MG_NOEUD* noeud,MG_ARETE* are,TOXFEM_POINT* pt,double precision) |
327 |
|
|
{ |
328 |
|
|
double tii,eps; |
329 |
|
|
are->inverser(tii,noeud->get_coord()); |
330 |
|
|
int compteur=0; |
331 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
332 |
|
|
do |
333 |
|
|
{ |
334 |
|
|
compteur++; |
335 |
|
|
double ti=tii; |
336 |
|
|
double xyz[3],dxyz[3],ddxyz[3]; |
337 |
|
|
are->deriver_seconde(ti,ddxyz,dxyz,xyz); |
338 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
339 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz[0],dxyz[1],dxyz[2]); |
340 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz[0],ddxyz[1],ddxyz[2]); |
341 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
342 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
343 |
|
|
eps=fabs(tii-ti); |
344 |
|
|
if (compteur>500) return 1e300; |
345 |
|
|
if (tii<are->get_tmin()) |
346 |
|
|
{ |
347 |
|
|
tii=are->get_tmin(); |
348 |
|
|
eps=0.; |
349 |
|
|
} |
350 |
|
|
if (tii>are->get_tmax()) |
351 |
|
|
{ |
352 |
|
|
tii=are->get_tmax(); |
353 |
|
|
eps=0.; |
354 |
|
|
} |
355 |
|
|
} |
356 |
|
|
while (eps>precision); |
357 |
|
|
double xyz[3],dxyz[3]; |
358 |
|
|
are->evaluer(tii,xyz); |
359 |
|
|
OT_VECTEUR_3D Ct(xyz[0],xyz[1],xyz[2]); |
360 |
|
|
double distance=(Ct-Pt).get_longueur(); |
361 |
|
|
MG_FACE* face1=are->get_mg_coarete(0)->get_boucle()->get_mg_face(); |
362 |
|
|
MG_FACE* face2=are->get_mg_coarete(1)->get_boucle()->get_mg_face(); |
363 |
|
|
are->deriver(tii,dxyz); |
364 |
|
|
OT_VECTEUR_3D x1(dxyz[0],dxyz[1],dxyz[2]); |
365 |
|
|
OT_VECTEUR_3D x2(dxyz[0],dxyz[1],dxyz[2]); |
366 |
|
|
x1=are->get_mg_coarete(0)->get_orientation()*x1; |
367 |
|
|
x2=are->get_mg_coarete(1)->get_orientation()*x2; |
368 |
|
|
x1.norme(); |
369 |
|
|
x2.norme(); |
370 |
|
|
double uv1[2],uv2[2]; |
371 |
|
|
double normal1[3],normal2[3]; |
372 |
|
|
face1->inverser(uv1,xyz); |
373 |
|
|
face2->inverser(uv2,xyz); |
374 |
|
|
face1->calcul_normale_unitaire(uv1,normal1); |
375 |
|
|
face2->calcul_normale_unitaire(uv2,normal2); |
376 |
|
|
OT_VECTEUR_3D z1(normal1[0],normal1[1],normal1[2]); |
377 |
|
|
OT_VECTEUR_3D z2(normal2[0],normal2[1],normal2[2]); |
378 |
|
|
z1=face1->get_mg_coface(0)->get_orientation()*z1; |
379 |
|
|
z2=face2->get_mg_coface(0)->get_orientation()*z2; |
380 |
|
|
OT_VECTEUR_3D y1=z1&x1; |
381 |
|
|
OT_VECTEUR_3D y2=z2&x2; |
382 |
|
|
double test=(z1&z2)*x1; |
383 |
|
|
int signe=-1; |
384 |
|
|
OT_VECTEUR_3D dirpt=Pt-Ct; |
385 |
|
|
if (test>0) |
386 |
|
|
{if ((z1*dirpt>0.) || (z2*dirpt>0.)) signe=1;} |
387 |
|
|
else |
388 |
|
|
{if ((z1*dirpt>0.) && (z2*dirpt>0.)) signe=1;} |
389 |
|
|
return signe*distance; |
390 |
|
|
} |
391 |
|
|
|
392 |
|
|
double TOXFEM::calcul_distance(MG_NOEUD* noeud,MG_FACE* face,TOXFEM_POINT* pt,double precision) |
393 |
|
|
{ |
394 |
|
|
double uvii[2],eps; |
395 |
|
|
pt->get_coord2(uvii); |
396 |
|
|
int compteur=0; |
397 |
|
|
OT_VECTEUR_3D Pt(noeud->get_x(),noeud->get_y(),noeud->get_z()); |
398 |
|
|
double delta_u,delta_v; |
399 |
|
|
do |
400 |
|
|
{ |
401 |
|
|
compteur++; |
402 |
|
|
double uvi[2]; |
403 |
|
|
uvi[0]=uvii[0]; |
404 |
|
|
uvi[1]=uvii[1]; |
405 |
|
|
double xyzduu[3],xyzdvv[3],xyzduv[3],xyzdu[3],xyzdv[3],xyz[3]; |
406 |
|
|
face->deriver_seconde(uvi,xyzduu,xyzduv,xyzdvv,xyz,xyzdu,xyzdv); |
407 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
408 |
|
|
OT_VECTEUR_3D Su(xyzdu[0],xyzdu[1],xyzdu[2]); |
409 |
|
|
OT_VECTEUR_3D Sv(xyzdv[0],xyzdv[1],xyzdv[2]); |
410 |
|
|
OT_VECTEUR_3D Suu(xyzduu[0],xyzduu[1],xyzduu[2]); |
411 |
|
|
OT_VECTEUR_3D Suv(xyzduv[0],xyzduv[1],xyzduv[2]); |
412 |
|
|
OT_VECTEUR_3D Svv(xyzdvv[0],xyzdvv[1],xyzdvv[2]); |
413 |
|
|
OT_VECTEUR_3D Distance = S-Pt; |
414 |
|
|
double a[4],b[2]; |
415 |
|
|
a[0]=Su.get_longueur2()+Distance*Suu; |
416 |
|
|
a[1]=Su*Sv+Distance*Suv; |
417 |
|
|
a[2]=Su*Sv+Distance*Suv; |
418 |
|
|
a[3]=Sv.get_longueur2()+Distance*Svv; |
419 |
|
|
b[0]=Distance*Su;b[0]=-b[0]; |
420 |
|
|
b[1]=Distance*Sv;b[1]=-b[1]; |
421 |
|
|
double deltau,deltav; |
422 |
|
|
double denominateur_delta=(a[0]*a[3]-a[2]*a[1]); |
423 |
|
|
if (a[0]<1E-12) |
424 |
|
|
deltau=0; |
425 |
|
|
else delta_u=(b[0]*a[3]-b[1]*a[1])/denominateur_delta; |
426 |
|
|
if (a[3]<1E-12) |
427 |
|
|
deltav=0; |
428 |
|
|
else delta_v=(a[0]*b[1]-a[2]*b[0])/denominateur_delta; |
429 |
|
|
/*if (fabs(denominateur_delta) < ( (fabs(a[0])+fabs(a[1])+fabs(a[2])+fabs(a[3]))*1e-12 ) ) |
430 |
|
|
return 1e300;*/ |
431 |
|
|
uvii[0]=uvi[0]+delta_u; |
432 |
|
|
uvii[1]=uvi[1]+delta_v; |
433 |
|
|
if (face->get_surface()->est_periodique_u()==1) |
434 |
|
|
{ |
435 |
|
|
if(uvii[0]<0.) uvii[0]=face->get_surface()->get_periode_u()-uvii[0]; |
436 |
|
|
if(uvii[0]>face->get_surface()->get_periode_u()) uvii[0]=uvii[0]-face->get_surface()->get_periode_u(); |
437 |
|
|
} |
438 |
|
|
if (face->get_surface()->est_periodique_v()==1) |
439 |
|
|
{ |
440 |
|
|
if(uvii[1]<0.) uvii[0]=face->get_surface()->get_periode_v()-uvii[1]; |
441 |
|
|
if(uvii[1]>face->get_surface()->get_periode_v()) uvii[1]=uvii[1]-face->get_surface()->get_periode_v(); |
442 |
|
|
} |
443 |
|
|
delta_u=uvii[0]-uvi[0]; |
444 |
|
|
delta_v=uvii[1]-uvi[1]; |
445 |
|
|
if (compteur>500) return 1e300; |
446 |
|
|
} |
447 |
|
|
|
448 |
|
|
while ((fabs(delta_u)>precision)||(fabs(delta_v)>precision)); |
449 |
|
|
double xyz[3]; |
450 |
|
|
face->evaluer(uvii,xyz); |
451 |
|
|
OT_VECTEUR_3D S(xyz[0],xyz[1],xyz[2]); |
452 |
|
|
double distance=(S-Pt).get_longueur(); |
453 |
|
|
return distance; |
454 |
|
|
} |
455 |
|
|
|
456 |
|
|
void TOXFEM::levelsetn(vector<MG_FACE*> *lstface,class MG_SOLUTION* solution,int numsol) |
457 |
|
|
{ |
458 |
|
|
solution->active_solution(numsol); |
459 |
|
|
int nbface=lstface->size(); |
460 |
|
|
if (nbface==0) return; |
461 |
|
|
vector<TOXFEM_POINT*> lst; |
462 |
|
|
for (int iface=0;iface<nbface;iface++) |
463 |
|
|
{ |
464 |
|
|
MG_FACE* face=(*lstface)[iface]; |
465 |
|
|
double umin=1e300,vmin=1e300,umax=-1e300,vmax=-1e300; |
466 |
|
|
int nbboucle=face->get_nb_mg_boucle(); |
467 |
|
|
for (int i=0;i<nbboucle;i++) |
468 |
francois |
104 |
{ |
469 |
francois |
106 |
MG_BOUCLE *boucle=face->get_mg_boucle(i); |
470 |
|
|
int nbarete=boucle->get_nb_mg_coarete(); |
471 |
|
|
for (int j=0;j<nbarete;j++) |
472 |
francois |
104 |
{ |
473 |
francois |
106 |
MG_ARETE* are=boucle->get_mg_coarete(j)->get_arete(); |
474 |
|
|
double tmin=are->get_tmin(); |
475 |
|
|
double tmax=are->get_tmax(); |
476 |
|
|
for (int k=0;k<NPAS;k++) |
477 |
|
|
{ |
478 |
|
|
double t=tmin+k*1.0/NPAS*(tmax-tmin); |
479 |
|
|
double xyz[3],uv[2]; |
480 |
|
|
are->evaluer(t,xyz); |
481 |
|
|
face->inverser(uv,xyz); |
482 |
|
|
if (uv[0]>umax) umax=uv[0]; |
483 |
|
|
if (uv[1]>vmax) vmax=uv[1]; |
484 |
|
|
if (uv[0]<umin) umin=uv[0]; |
485 |
|
|
if (uv[1]<vmin) vmin=uv[1]; |
486 |
|
|
} |
487 |
|
|
} |
488 |
francois |
104 |
} |
489 |
francois |
106 |
if (face->get_surface()->est_periodique_u()) |
490 |
francois |
104 |
{ |
491 |
francois |
106 |
umin=0; |
492 |
|
|
umax=face->get_surface()->get_periode_u(); |
493 |
francois |
104 |
} |
494 |
francois |
106 |
if (face->get_surface()->est_periodique_v()) |
495 |
|
|
{ |
496 |
|
|
vmin=0; |
497 |
|
|
vmax=face->get_surface()->get_periode_v(); |
498 |
|
|
} |
499 |
|
|
for (int i=-5;i<NPAS+5;i++) |
500 |
|
|
for (int j=-5;j<NPAS+5;j++) |
501 |
|
|
{ |
502 |
|
|
double uv[0]; |
503 |
|
|
uv[0]=umin+i*1.0/NPAS*(umax-umin); |
504 |
|
|
uv[1]=vmin+j*1.0/NPAS*(vmax-vmin); |
505 |
|
|
double xyz[3]; |
506 |
|
|
if ((face->valide_parametre_u(uv[0])) && (face->valide_parametre_u(uv[1]))) |
507 |
|
|
{ |
508 |
|
|
face->evaluer(uv,xyz); |
509 |
|
|
TOXFEM_POINT *pt=new TOXFEM_POINT(xyz[0],xyz[1],xyz[2],face); |
510 |
|
|
lst.push_back(pt); |
511 |
|
|
} |
512 |
|
|
} |
513 |
francois |
104 |
} |
514 |
francois |
106 |
calcullevelsetpremierepasse(solution,numsol,(*lstface)[0],&lst,0,lst.size()); |
515 |
|
|
calcullevelsetdeuxiemepasse(solution,numsol,&lst); |
516 |
|
|
|
517 |
|
|
} |