1 |
|
5 |
//------------------------------------------------------------
|
2 |
|
|
//------------------------------------------------------------
|
3 |
|
|
// MAGiC
|
4 |
|
|
// Jean Christophe Cuillière et Vincent FRANCOIS
|
5 |
|
|
// Département de Génie Mécanique - UQTR
|
6 |
|
|
//------------------------------------------------------------
|
7 |
|
|
// Le projet MAGIC est un projet de recherche du département
|
8 |
|
|
// de génie mécanique de l'Université du Québec à
|
9 |
|
|
// Trois Rivières
|
10 |
|
|
// Les librairies ne peuvent être utilisées sans l'accord
|
11 |
|
|
// des auteurs (contact : francois@uqtr.ca)
|
12 |
|
|
//------------------------------------------------------------
|
13 |
|
|
//------------------------------------------------------------
|
14 |
|
|
//
|
15 |
|
|
// stbspline.cpp
|
16 |
|
|
//
|
17 |
|
|
//------------------------------------------------------------
|
18 |
|
|
//------------------------------------------------------------
|
19 |
|
|
// COPYRIGHT 2000
|
20 |
|
|
// Version du 02/03/2006 à 11H24
|
21 |
|
|
//------------------------------------------------------------
|
22 |
|
|
//------------------------------------------------------------
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h"
|
26 |
|
|
|
27 |
|
|
#include "stbspline.h"
|
28 |
|
|
#include <vector>
|
29 |
|
|
#include "st_gestionnaire.h"
|
30 |
|
|
#include "tpl_fonction.h"
|
31 |
|
|
#include "constantegeo.h"
|
32 |
francois |
19 |
|
33 |
|
5 |
#include <math.h>
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
ST_B_SPLINE::ST_B_SPLINE(long LigneCourante,std::string idori,int bs_degre,std::vector<int> bs_indexptsctr,std::vector<int> bs_knots_multiplicities,std::vector<double> bs_knots):ST_COURBE(LigneCourante,idori),degre(bs_degre)
|
38 |
|
|
{
|
39 |
|
|
int nb=bs_knots_multiplicities.size();
|
40 |
|
|
for (int i=0;i<nb;i++)
|
41 |
|
|
{
|
42 |
|
|
for (int j=0;j<bs_knots_multiplicities[i];j++)
|
43 |
|
|
knots.insert(knots.end(),bs_knots[i]);
|
44 |
|
|
}
|
45 |
|
|
nb_point=bs_indexptsctr.size();
|
46 |
|
|
for (int i=0;i<nb_point;i++)
|
47 |
|
|
{
|
48 |
|
|
indexptsctr.insert(indexptsctr.end(),bs_indexptsctr[i]);
|
49 |
|
|
poids.insert(poids.end(),1.);
|
50 |
|
|
}
|
51 |
|
|
|
52 |
|
|
}
|
53 |
|
|
|
54 |
|
|
ST_B_SPLINE::ST_B_SPLINE(int bs_degre,std::vector<double> &vec_knots,std::vector<double> &vec_point,std::vector<double> &vec_poids):ST_COURBE(),degre(bs_degre)
|
55 |
|
|
{
|
56 |
|
|
int nb=vec_knots.size();
|
57 |
|
|
for (int i=0;i<nb;i++)
|
58 |
|
|
knots.insert(knots.end(),vec_knots[i]);
|
59 |
|
|
nb_point=vec_point.size()/3;
|
60 |
|
|
for (int i=0;i<nb_point;i++)
|
61 |
|
|
{
|
62 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i]);
|
63 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i+1]);
|
64 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i+2]);
|
65 |
|
|
poids.insert(poids.end(),vec_poids[i]);
|
66 |
|
|
}
|
67 |
|
|
double xyz1[3];
|
68 |
|
|
double xyz2[3];
|
69 |
|
|
xyz1[0]=vec_point[0];
|
70 |
|
|
xyz1[1]=vec_point[1];
|
71 |
|
|
xyz1[2]=vec_point[2];
|
72 |
|
|
xyz2[0]=vec_point[3*nb_point-3];
|
73 |
|
|
xyz2[1]=vec_point[3*nb_point-2];
|
74 |
|
|
xyz2[2]=vec_point[3*nb_point-1];
|
75 |
|
|
periodique=0;
|
76 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6))
|
77 |
|
|
{
|
78 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6))
|
79 |
|
|
{
|
80 |
|
|
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6))
|
81 |
|
|
periodique=1;
|
82 |
|
|
}
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
if (periodique==1)
|
86 |
|
|
{
|
87 |
|
|
int i=knots.size();
|
88 |
|
|
periode=(knots[i-1]-knots[0]);
|
89 |
|
|
}
|
90 |
|
|
else periode=0;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
ST_B_SPLINE::~ST_B_SPLINE()
|
94 |
|
|
{
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
int ST_B_SPLINE::get_intervalle(int nb_point, int degre, double t, std::vector<double> &knots)
|
98 |
|
|
{
|
99 |
|
|
int inter;
|
100 |
|
|
if (OPERATEUR::egal(t,knots[nb_point],1E-12)==1) inter=nb_point-1;
|
101 |
|
|
else
|
102 |
|
|
{
|
103 |
|
|
int low=degre;
|
104 |
|
|
int high=nb_point+1;
|
105 |
|
|
int mid=((low+high)/2);
|
106 |
|
|
while ((t<knots[mid-1]) || (t>=knots[mid]))
|
107 |
|
|
{
|
108 |
|
|
if (t<knots[mid-1]) high=mid;
|
109 |
|
|
else low=mid;
|
110 |
|
|
mid=(low+high)/2;
|
111 |
|
|
}
|
112 |
|
|
inter=mid-1;
|
113 |
|
|
}
|
114 |
|
|
return inter;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
// Setup the binomial coefficients into th matrix Bin
|
118 |
|
|
// Bin(i,j) = (i j)
|
119 |
|
|
// The binomical coefficients are defined as follow
|
120 |
|
|
// (n) n!
|
121 |
|
|
// (k) = k!(n-k)! 0<=k<=n
|
122 |
|
|
// and the following relationship applies
|
123 |
|
|
// (n+1) (n) ( n )
|
124 |
|
|
// ( k ) = (k) + (k-1)
|
125 |
|
|
/*!
|
126 |
|
|
\brief Setup a matrix containing binomial coefficients
|
127 |
|
|
|
128 |
|
|
Setup the binomial coefficients into th matrix Bin
|
129 |
|
|
\htmlonly
|
130 |
|
|
\[ Bin(i,j) = \left( \begin{array}{c}i \\ j\end{array} \right)\]
|
131 |
|
|
The binomical coefficients are defined as follow
|
132 |
|
|
\[ \left(\begin{array}{c} n \\ k \end{array} \right)= \frac{ n!}{k!(n-k)!} \mbox{for $0\leq k \leq n$} \]
|
133 |
|
|
and the following relationship applies
|
134 |
|
|
\[ \left(\begin{array}{c} n+1 \\ k \end{array} \right) =
|
135 |
|
|
\left(\begin{array}{c} n \\ k \end{array} \right) +
|
136 |
|
|
\left(\begin{array}{c} n \\ k-1 \end{array} \right) \]
|
137 |
|
|
\endhtmlonly
|
138 |
|
|
|
139 |
|
|
\param Bin the binomial matrix
|
140 |
|
|
\author Philippe Lavoie
|
141 |
|
|
\date 24 January, 1997
|
142 |
|
|
*/
|
143 |
francois |
19 |
void ST_B_SPLINE::binomialCoef(double * Bin, int d){
|
144 |
|
5 |
int n,k;
|
145 |
|
|
// Setup the first line
|
146 |
francois |
19 |
Bin[0] = 1.0 ;
|
147 |
|
|
for(k=d-1;k>0;--k)
|
148 |
|
|
Bin[k] = 0.0 ;
|
149 |
|
5 |
// Setup the other lines
|
150 |
francois |
19 |
for(n=0;n<d-1;n++){
|
151 |
|
|
Bin[(n+1)*d+0] = 1.0 ;
|
152 |
|
|
for(k=1;k<d;k++)
|
153 |
|
5 |
if(n+1<k)
|
154 |
francois |
19 |
Bin[(n+1)*d+k] = 0.0 ;
|
155 |
|
5 |
else
|
156 |
francois |
19 |
Bin[(n+1)*d+k] = Bin[n*d+k] + Bin[n*d+k-1] ;
|
157 |
|
5 |
}
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
void ST_B_SPLINE::get_valeur_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n)
|
161 |
|
|
{
|
162 |
|
|
//inter=get_intervalle(nb_point,degre,t,knots);
|
163 |
|
|
double saved;
|
164 |
|
|
grand_n[0]=1.0;
|
165 |
|
|
double gauche[16];
|
166 |
|
|
double droite[16];
|
167 |
|
|
for (int j=1;j<=degre;j++)
|
168 |
|
|
{
|
169 |
|
|
gauche[j-1]= t-knots[inter-j+1];
|
170 |
|
|
droite[j-1]=knots[inter+j]-t;
|
171 |
|
|
saved=0.0;
|
172 |
|
|
for (int r=0;r<j;r++)
|
173 |
|
|
{
|
174 |
|
|
double temp=grand_n[r]/(droite[r]+ gauche[j-r-1]);
|
175 |
|
|
grand_n[r]=saved+droite[r]* temp;
|
176 |
|
|
saved=gauche[j-r-1]*temp;
|
177 |
|
|
}
|
178 |
|
|
grand_n[j]=saved;
|
179 |
|
|
}
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
void ST_B_SPLINE::evaluer(double t,double *Cw)
|
184 |
|
|
{
|
185 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots);
|
186 |
|
|
double grand_n[256];
|
187 |
|
|
get_valeur_fonction(inter,t,degre,knots,grand_n);
|
188 |
|
|
|
189 |
|
|
// somme ( Ni,p(t) * Wi * Pi ) / somme ( Ni,p(t) * Wi )
|
190 |
|
|
|
191 |
|
|
double R[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
192 |
|
|
double Sum_Ni_wi = 0;
|
193 |
|
|
|
194 |
|
|
for (int j=0; j<=degre; j++)
|
195 |
|
|
{
|
196 |
|
|
Sum_Ni_wi += grand_n[j] * poids[inter-degre+j];
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
for (int j=0; j<=degre; j++)
|
200 |
|
|
{
|
201 |
|
|
R[j] = grand_n[j] * poids[inter-degre+j] / Sum_Ni_wi;
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
for (int i=0; i<3; i++)
|
205 |
|
|
{
|
206 |
|
|
Cw[i] = 0;
|
207 |
|
|
for (int j=0; j<=degre; j++)
|
208 |
|
|
{
|
209 |
|
|
Cw[i] += R[j] * ptsctr[3*(inter-degre+j)+i];
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
void ST_B_SPLINE::deriver_pts(int nb_point,int degre,std::vector<double> &knots,std::vector<double> &ptsctr_x,int d,int r1,int r2,double *PK_x)
|
217 |
|
|
{
|
218 |
|
|
int r = r2-r1;
|
219 |
|
|
#define PK_x(i,j) (*(PK_x+(i)*(degre+1)+j))
|
220 |
|
|
for (int i=0; i<=r; i++)
|
221 |
|
|
{
|
222 |
|
|
PK_x(0,i)= ptsctr_x[r1+i];
|
223 |
|
|
}
|
224 |
|
|
for (int k=1; k<=d; k++)
|
225 |
|
|
{
|
226 |
|
|
int tmp = degre-k+1;
|
227 |
|
|
for (int i=0; i<=r-k; i++)
|
228 |
|
|
{
|
229 |
|
|
PK_x(k,i)= tmp*(PK_x(k-1,i+1)-PK_x(k-1,i))/(knots[r1+i+degre+1]-knots[r1+i+k]);
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
#undef PK_x // enlever (i,j)
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
void ST_B_SPLINE::get_tout_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n)
|
236 |
|
|
{
|
237 |
|
|
//inter=get_intervalle(nb_point,degre,t,knots);
|
238 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j))
|
239 |
|
|
double saved;
|
240 |
|
|
grand_n(0,0)=1.0;
|
241 |
|
|
double gauche[16];
|
242 |
|
|
double droite[16];
|
243 |
|
|
for (int j=1;j<=degre;j++)
|
244 |
|
|
{
|
245 |
|
|
gauche[j-1]= t-knots[inter-j+1];
|
246 |
|
|
droite[j-1]=knots[inter+j]-t;
|
247 |
|
|
saved=0.0;
|
248 |
|
|
for (int r=0;r<j;r++)
|
249 |
|
|
{
|
250 |
|
|
grand_n(j,r)=(droite[r]+ gauche[j-r-1]);
|
251 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r);
|
252 |
|
|
|
253 |
|
|
grand_n(r,j)= saved+droite[r]*temp;
|
254 |
|
|
saved=gauche[j-r-1]*temp;
|
255 |
|
|
}
|
256 |
|
|
grand_n(j,j)=saved;
|
257 |
|
|
}
|
258 |
|
|
#undef grand_n // enlever (i,j)
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
void ST_B_SPLINE::deriver_bs_kieme(int nb_point,int degre,std::vector<double> &knots,std::vector<double> &ptsctr_x,double t,int d,double *CK)
|
262 |
|
|
{
|
263 |
|
|
int du = std::min(d,degre);
|
264 |
|
|
for (int k=degre+1;k<=d;k++)
|
265 |
|
|
{
|
266 |
|
|
CK[k]=0.0;
|
267 |
|
|
}
|
268 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots);
|
269 |
|
|
double grand_n[256];
|
270 |
|
|
get_tout_fonction(inter,t,degre,knots,grand_n);
|
271 |
|
|
|
272 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j))
|
273 |
|
|
double PK[256];
|
274 |
|
|
deriver_pts(nb_point,degre,knots,ptsctr_x,du,inter-degre,inter,PK);
|
275 |
|
|
#define PK(i,j) (*(PK+(i)*(degre+1)+j))
|
276 |
|
|
for(int k=0; k<=du;k++)
|
277 |
|
|
{
|
278 |
|
|
CK[k] = 0.0;
|
279 |
|
|
for(int j=0; j<=degre-k;j++)
|
280 |
|
|
{
|
281 |
|
|
CK[k] = CK[k]+ grand_n(j,degre-k)*PK(k,j); //PK(k,j) PK[k*degre+j]
|
282 |
|
|
}
|
283 |
|
|
}
|
284 |
|
|
#undef PK // enlever (i,j)
|
285 |
|
|
#undef grand_n // enlever (i,j)
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
void ST_B_SPLINE::deriver_kieme(double t,int d,double *CK_x,double *CK_y,double *CK_z)
|
291 |
|
|
{
|
292 |
|
|
double Aders_x[16];
|
293 |
|
|
double Aders_y[16];
|
294 |
|
|
double Aders_z[16];
|
295 |
|
|
std::vector<double> ptsctr_wx;
|
296 |
|
|
std::vector<double> ptsctr_wy;
|
297 |
|
|
std::vector<double> ptsctr_wz;
|
298 |
|
|
double xyz[3];
|
299 |
|
|
for (int i=0;i<nb_point;i++)
|
300 |
|
|
{
|
301 |
|
|
xyz[0]=ptsctr[3*i];
|
302 |
|
|
xyz[1]=ptsctr[3*i+1];
|
303 |
|
|
xyz[2]=ptsctr[3*i+2];
|
304 |
|
|
ptsctr_wx.insert(ptsctr_wx.end(),poids[i]*xyz[0]);
|
305 |
|
|
ptsctr_wy.insert(ptsctr_wy.end(),poids[i]*xyz[1]);
|
306 |
|
|
ptsctr_wz.insert(ptsctr_wz.end(),poids[i]*xyz[2]);
|
307 |
|
|
}
|
308 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wx,t,d,Aders_x);
|
309 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wy,t,d,Aders_y);
|
310 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wz,t,d,Aders_z);
|
311 |
|
|
double Wders[16];
|
312 |
|
|
deriver_bs_kieme(nb_point,degre,knots,poids,t,d,Wders);
|
313 |
|
|
double Bin[256];
|
314 |
|
|
binomialCoef(Bin, d);
|
315 |
|
|
#define Bin(i,j) (*(Bin+(i)*(3)+j))
|
316 |
|
|
for(int k=0;k<=d;k++)
|
317 |
|
|
{
|
318 |
|
|
double v_x = Aders_x[k];
|
319 |
|
|
double v_y = Aders_y[k];
|
320 |
|
|
double v_z = Aders_z[k];
|
321 |
|
|
for(int i=1;i<=k;i++)
|
322 |
|
|
{
|
323 |
|
|
v_x = v_x - Bin(k-1,i-1)*Wders[i]*CK_x[k-i];
|
324 |
|
|
v_y = v_y - Bin(k-1,i-1)*Wders[i]*CK_y[k-i];
|
325 |
|
|
v_z = v_z - Bin(k-1,i-1)*Wders[i]*CK_z[k-i];
|
326 |
|
|
}
|
327 |
|
|
CK_x[k] = v_x/Wders[0];
|
328 |
|
|
CK_y[k] = v_y/Wders[0];
|
329 |
|
|
CK_z[k] = v_z/Wders[0];
|
330 |
|
|
}
|
331 |
|
|
#undef Bin // enlever (i,j)
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
void ST_B_SPLINE::deriver(double t,double *dxyz)
|
335 |
|
|
{
|
336 |
|
|
double CK_x[2];
|
337 |
|
|
double CK_y[2];
|
338 |
|
|
double CK_z[2];
|
339 |
|
|
deriver_kieme(t,1,CK_x,CK_y,CK_z);
|
340 |
|
|
dxyz[0]=CK_x[1];
|
341 |
|
|
dxyz[1]=CK_y[1];
|
342 |
|
|
dxyz[2]=CK_z[1];
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
void ST_B_SPLINE::deriver_seconde(double t,double *ddxyz,double* dxyz ,double* xyz )
|
346 |
|
|
{
|
347 |
|
|
double CK_x[3];
|
348 |
|
|
double CK_y[3];
|
349 |
|
|
double CK_z[3];
|
350 |
|
|
deriver_kieme(t,2,CK_x,CK_y,CK_z);
|
351 |
|
|
ddxyz[0]=CK_x[2];
|
352 |
|
|
ddxyz[1]=CK_y[2];
|
353 |
|
|
ddxyz[2]=CK_z[2];
|
354 |
|
|
if (dxyz!=NULL)
|
355 |
|
|
{
|
356 |
|
|
dxyz[0]=CK_x[1];
|
357 |
|
|
dxyz[1]=CK_y[1];
|
358 |
|
|
dxyz[2]=CK_z[1];
|
359 |
|
|
}
|
360 |
|
|
if (xyz!=NULL)
|
361 |
|
|
{
|
362 |
|
|
xyz[0]=CK_x[0];
|
363 |
|
|
xyz[1]=CK_y[0];
|
364 |
|
|
xyz[2]=CK_z[0];
|
365 |
|
|
}
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
void ST_B_SPLINE::inverser(double& t,double *xyz,double precision)
|
371 |
|
|
{
|
372 |
|
|
int code;
|
373 |
|
|
int num_point=nb_point;
|
374 |
|
|
do
|
375 |
|
|
{
|
376 |
|
|
code=inverser2(t,xyz,num_point,precision);
|
377 |
|
|
num_point=num_point*2;
|
378 |
|
|
}
|
379 |
|
|
while (code==0);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
int ST_B_SPLINE::inverser2(double& t,double *xyz,int num_test,double precision)
|
383 |
|
|
{
|
384 |
|
|
double xyz1[3];
|
385 |
|
|
double dxyz1[3];
|
386 |
|
|
double ddxyz1[3];
|
387 |
|
|
double ti;
|
388 |
|
|
double eps;
|
389 |
|
|
double tmin=get_tmin();
|
390 |
|
|
double tmax=get_tmax();
|
391 |
|
|
OT_VECTEUR_3D Pt(xyz[0],xyz[1],xyz[2]);
|
392 |
|
|
double distance_ref=1e308;
|
393 |
|
|
int ref;
|
394 |
|
|
|
395 |
|
|
for (int i=0;i<num_test+1;i++)
|
396 |
|
|
{
|
397 |
|
|
double t=tmin+i*1./num_test*(tmax-tmin);
|
398 |
|
|
evaluer(t,xyz1);
|
399 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]);
|
400 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt;
|
401 |
|
|
double longueur=Distance.get_longueur2();
|
402 |
|
|
if (longueur<distance_ref)
|
403 |
|
|
{
|
404 |
|
|
distance_ref=longueur;
|
405 |
|
|
ref=i;
|
406 |
|
|
}
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
double tii=tmin+ref*1./num_test*(tmax-tmin);
|
410 |
|
|
int compteur=0;
|
411 |
|
|
do
|
412 |
|
|
{
|
413 |
|
|
compteur++;
|
414 |
|
|
ti=tii;
|
415 |
|
|
deriver_seconde(ti,ddxyz1,dxyz1,xyz1);
|
416 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]);
|
417 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz1[0],dxyz1[1],dxyz1[2]);
|
418 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz1[0],ddxyz1[1],ddxyz1[2]);
|
419 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt;
|
420 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2());
|
421 |
|
|
if (periodique==1)
|
422 |
|
|
{
|
423 |
|
|
if (tii<get_tmin()) tii=get_tmax()-(get_tmin()-tii);
|
424 |
|
|
if (tii>get_tmax()) tii=get_tmin()+(tii-get_tmax());
|
425 |
|
|
}
|
426 |
|
|
else
|
427 |
|
|
{
|
428 |
|
|
if (tii<get_tmin()) tii=get_tmin();
|
429 |
|
|
if (tii>get_tmax()) tii=get_tmax();
|
430 |
|
|
}
|
431 |
|
|
eps=fabs(tii-ti);
|
432 |
|
|
if (compteur>500) return 0;
|
433 |
|
|
}
|
434 |
|
|
while (eps>precision);
|
435 |
|
|
t=ti;
|
436 |
|
|
return 1;
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
double ST_B_SPLINE::get_tmin()
|
440 |
|
|
{
|
441 |
|
|
return knots[0];
|
442 |
|
|
}
|
443 |
|
|
double ST_B_SPLINE::get_tmax()
|
444 |
|
|
{
|
445 |
|
|
int i=knots.size();
|
446 |
|
|
return knots[i-1];
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
double equation_longueur(ST_B_SPLINE& bsp,double t)
|
450 |
|
|
{
|
451 |
|
|
double dxyz[3];
|
452 |
|
|
bsp.deriver(t,dxyz);
|
453 |
|
|
return sqrt(dxyz[0]*dxyz[0]+dxyz[1]*dxyz[1]+dxyz[2]*dxyz[2]);
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
|
457 |
|
|
double ST_B_SPLINE::get_longueur(double t1,double t2,double precis)
|
458 |
|
|
{
|
459 |
|
|
TPL_FONCTION1<double,ST_B_SPLINE,double> longueur_bsp(*this,equation_longueur);
|
460 |
|
|
return longueur_bsp.integrer_gauss_2(t1,t2);
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
|
464 |
|
|
int ST_B_SPLINE::est_periodique(void)
|
465 |
|
|
{
|
466 |
|
|
return periodique;
|
467 |
|
|
}
|
468 |
|
|
double ST_B_SPLINE::get_periode(void)
|
469 |
|
|
{
|
470 |
|
|
return periode;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
int ST_B_SPLINE::get_type_geometrique(TPL_LISTE_ENTITE<double> ¶m)
|
474 |
|
|
{
|
475 |
|
|
for(int i=0;i<nb_point-(degre+1);i++)
|
476 |
|
|
{
|
477 |
|
|
param.ajouter(knots[i]);
|
478 |
|
|
}
|
479 |
|
|
double xyz[3];
|
480 |
|
|
for(int i=0;i<nb_point;i++)
|
481 |
|
|
{
|
482 |
|
|
xyz[0]=ptsctr[3*i];
|
483 |
|
|
xyz[1]=ptsctr[3*i+1];
|
484 |
|
|
xyz[2]=ptsctr[3*i+2];
|
485 |
|
|
param.ajouter(xyz[0]);
|
486 |
|
|
param.ajouter(xyz[1]);
|
487 |
|
|
param.ajouter(xyz[2]);
|
488 |
|
|
}
|
489 |
|
|
for(int i=0;i<nb_point;i++)
|
490 |
|
|
{
|
491 |
|
|
param.ajouter(poids[i]);
|
492 |
|
|
}
|
493 |
|
|
param.ajouter(degre);
|
494 |
|
|
return MGCo_BSPLINE;
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
void ST_B_SPLINE::initialiser(ST_GESTIONNAIRE *gest)
|
498 |
|
|
{
|
499 |
|
|
int i=indexptsctr.size();
|
500 |
|
|
ST_POINT* point1=gest->lst_point.getid(indexptsctr[0]);
|
501 |
|
|
ST_POINT* point2=gest->lst_point.getid(indexptsctr[i-1]);
|
502 |
|
|
double xyz1[3];
|
503 |
|
|
double xyz2[3];
|
504 |
|
|
point1->evaluer(xyz1);
|
505 |
|
|
point2->evaluer(xyz2);
|
506 |
|
|
periodique=0;
|
507 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6))
|
508 |
|
|
{
|
509 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6))
|
510 |
|
|
{
|
511 |
|
|
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6))
|
512 |
|
|
periodique=1;
|
513 |
|
|
}
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
if (periodique==1)
|
517 |
|
|
{
|
518 |
|
|
int i=knots.size();
|
519 |
|
|
periode=(knots[i-1]-knots[0]);
|
520 |
|
|
}
|
521 |
|
|
else periode=0;
|
522 |
|
|
|
523 |
|
|
int nbptsctr=indexptsctr.size();
|
524 |
|
|
for (int i=0;i<nbptsctr;i++)
|
525 |
|
|
{
|
526 |
|
|
ST_POINT* stpoint=gest->lst_point.getid(indexptsctr[i]);
|
527 |
|
|
double xyz[3];
|
528 |
|
|
stpoint->evaluer(xyz);
|
529 |
|
|
ptsctr.insert(ptsctr.end(),xyz[0]);
|
530 |
|
|
ptsctr.insert(ptsctr.end(),xyz[1]);
|
531 |
|
|
ptsctr.insert(ptsctr.end(),xyz[2]);
|
532 |
|
|
}
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
void ST_B_SPLINE::est_util(ST_GESTIONNAIRE* gest)
|
540 |
|
|
{
|
541 |
|
|
util=true;
|
542 |
|
|
for (int i=0;i<nb_point;i++)
|
543 |
|
|
gest->lst_point.getid(indexptsctr[i])->est_util(gest);
|
544 |
|
|
}
|
545 |
|
|
|
546 |
francois |
19 |
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
void ST_B_SPLINE::get_param_NURBS(int& nb_param,TPL_LISTE_ENTITE<double> ¶m)
|
550 |
|
|
{
|
551 |
|
|
|
552 |
|
|
// the order stock of the parameters is:
|
553 |
|
|
// 1/ the variante type =1 (dimension one)
|
554 |
|
|
// 2/ the order of the spline in two dirction the second direction is zero
|
555 |
|
|
// 3/ the number of the control points
|
556 |
|
|
// 4/ the knots vector
|
557 |
|
|
// 5/ the control points cordinates in homogeneos forms
|
558 |
|
|
|
559 |
|
|
// The first parameter indicate the code access
|
560 |
|
|
param.ajouter(1);
|
561 |
|
|
// The follewing two parameters of the list indicate the orders of the net points
|
562 |
|
|
|
563 |
|
|
param.ajouter(degre+1);
|
564 |
|
|
param.ajouter(0);
|
565 |
|
|
|
566 |
|
|
// The follewing two parameters indicate the number of rows and colons of the control points
|
567 |
|
|
// respectively to the two parameters directions
|
568 |
|
|
|
569 |
|
|
param.ajouter(nb_point);
|
570 |
|
|
param.ajouter(0);
|
571 |
|
|
|
572 |
|
|
// this present the knot vector in the u-direction
|
573 |
|
|
|
574 |
|
|
for(unsigned int i=0;i<knots.size();i++)
|
575 |
|
|
{
|
576 |
|
|
param.ajouter(knots[i]);
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
// in the following we construct the control point vector
|
580 |
|
|
|
581 |
|
|
for(unsigned int pt=0;pt<ptsctr.size();pt++)
|
582 |
|
|
{
|
583 |
|
|
param.ajouter(ptsctr[pt]);
|
584 |
|
|
}
|
585 |
|
|
nb_param=5+knots.size();
|
586 |
|
|
}
|